
Department of Electrical Engineering
An-Najah National University

(Nablus,Palestine)

Graduation Project

Validation of Model Metrics as
Indicators on Model Quality

Author:

Omar J.S. Ayoub

Supervisor:

Pascal Montag
Jammal Khrousheh

Stuttgart, Germany

May, 2012





Abstract

This study is an empirical investigation of the relations between model measurements and
model quality. The main objective of this study is to de�ne a set of model metrics which
correlate strongly with failure reports and experts opinion. Then, to use these metrics as
indicators on model quality and predictors of model failure.

This study targets a group of `Simulink' models used in the development of embedded
software within the automotive industry. Model Based Development has been a funda-
mental method in the development of embedded software in the automotive industry for
the last two decades.

Alongside empirical values, this study distinguish between all factors and variables
which may e�ect the quality of a model as an in�uence network. By identifying the
in�uential factors it will be possible to prevent negative development.
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Chapter 1

Introduction

This chapter seeks to explain fundamental concepts and calculations alongside this study.
The research focuses on model quality, therefore, it is important to answer several key
questions: Why is model quality a critical issue within the automotive industry? What
do we mean by "quality assurance"? What are the methods and techniques used by
developers to enhance the quality of products? How does this research address its main
objective of aiding in improving work quality while reducing time and cost within the
development cycle?

The last section of this chapter introduces metrics and models used to build the nu-
merical database, the measurements which were normalized and scaled, and the general
preparation of data within this study.

Signi�cance

Model metrics are quantitative measures, utilized to understand model quality. This
research uses metrics de�ned in the model-based engineering tool. [15].

The research aims to validated these metrics by correlating them to various reference
entities. These references are referred to as experts opinion and failure reports. The
research limited the metrics to a set of strongly correlated measures and presents them
as indicators of model quality and failure probability.

Prior to presenting the calculations, this research provides an in�uence diagram and
lists impact factors. These factors are assumed to re�ect the root causes of model failure.
Mapping both sets, the indications and impacts validate these assumptions and results of
the aforementioned calculations.
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Figure 1.1: Model-based development

1.1 Model Based Development

Model-based development is comprised of the use of charts, diagrams, and supporting
visualization materials within the development process to represent and explain the pro-
cesses and functionalities of the project. Examples of the appropriate environment for
model-based development are Matlab Simlink and UML. The graphical or visual repre-
sentations of the source codes or mathematical formulas which describe the projects are
instrumental within the development process.

Model-based design supports the understanding, simulation, testing, and maintenance
of the projects.[2] It also guarantees a higher quality of the embedded codes installed
within the ECUs, as these codes are generated automatically by specialized tools, such
as Targetlink, HDL coder, and Real Time Workshop. All of this aforementioned tools
produce codes with di�erent systemization, structure, and characteristics which are more
desirable, especially within large projects.

In this decade, cars contain more than �fty ECUs. These ECUs contain between 100
to 200 millions lines of code.1 Model-based development and automatic code generation
are indispensable for the current and future of the automotive industry.

1.2 Quality Assurance, Rating and Prediction

Overall, model quality may be de�ned within two aspects. One, the internal quality
focusing on design and development and two, the evaluation of �tness for purposes of the
product.

1http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
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The model's internal quality is simply de�ned by how much a model ful�lls the spec-
i�cations, requirements, and guidelines. The compatibility is investigated using various
tools and methods.

One of the methods is model checking, in which, models, codes and elements of libraries
used in development are checked to match speci�cations. Other tools are used for checking
compatibility with di�erent sets of guidelines.

Model external quality is de�ned by how successful a model can perform in testing
or in the market after �nal production. In other words, model quality represents how a
model fails and how a failure re�ects on the functionalities administered by the ECU(s).
This data was collected for the set of models focused on in this study and failure reports
were interpreted in order to rate these models' quality.

Meanwhile, other quality ratings and metrics for models can be obtained from a tool
which was developed within Sheible's thesis.[15] The key endeavor of this study consists
of comparing these ratings and measurements to the failure reports of the same set of
models in order to extract a list of metrics which indicate strong failure probability and
then use these metrics as predictors in the quality of other models and projects.

1.3 De�nitions, Metrics, Models

This section seeks to provide a foundation to support the comprehension and results of
this study. In the beginning this section supplements the general objective with short of
de�nitions of key terms that are most frequently used within this study. Then, it seeks
to de�ne and categorize metrics utilized within this study. These metrics are introduced
by Sheible in his work regarding model quality rating.

• Definitions

Model metric: A measurement of properties of portions of a model or software.
The measurements are quantitative, but used and interpreted as quality met-
rics.

Error: Deviation from the speci�cation or as the actual result deviates from ex-
pected or correct result.

• Model-based engineering Metrics

In Sheible's thesis, an assessment tool was created to calculate eighty-four mea-
surements of Simulink models. The tool was built using Java and utilizes (mdlx2)
�les of the models to calculate and classify measurements. Measurements are cat-
egorized based on their characteristics. Alongside measurement calculations, the
Model-based engineering tool is able to rate the quality of any model in comparison
to a referenced set of models (reference measurement database).

A brief test on the quality rating functionality showed that the rating value has
potential to be very sensitive to changes in the reference measurement database.

2Matlab model in extensible markup language(xml).
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This is due to the rating not depending on a �xed reference, but rather on the
relation between the measurements of the rated model and of the models included
in the database. The rating is sensitive toward both the number of database models
and the nature of these models.

The tool measures eighty-four metrics for every model. These metrics belong to
di�erent categories. They can be categorized according to what they represent or
according to how they are calculated. Some of these metrics require extra data to
be calculated or may need to be manually entered.

The illustration below (Figure 1.3) demonstrates metrics for models. Although
measurements are not easily read in the illustration, the main objective is to demon-
strate the great variation of metrics prior to scaling and normalization.

It is evident that the data varies largely between di�erent models depending on
di�erent metrics. Considering the raw data without attention to size di�erences
can threaten the validity of results due to their dependence on size di�erences.
Therefore, normalizing all metrics and scaling them from zero to one is vital.

Figure 1.2: The metrics for all models

In order to normalize metrics, they have been divided into four subgroups. The
�rst group consists of the metrics which depend on the number of used subsystems
and for these metrics the number of subsystems is the normalization reference. This
is achieved by dividing metrics of each model by the number of subsystems of the
same model.(See Table 1.3) According to this, the subsystems count is one for all
models, therefore we exclude this step in further calculations.
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Table 1.1: Metrics normalized by # subsystems

Normalized by number of subsystems

# arithmetic subsystems # atomic subsystems
# clones # cycles
# internal states # logic subsystems
# signal routing subsystems # testable subsystems with implicit inport

data types
# testable subsystems with incoming buses Depth of subsystem hierarchy

According to the mathematical de�nition provided by documentation of the MBE
tool, the metrics in Table 1.2 are dependent on the blocks count in each model. The
same operation was repeated, but excluding the metric number of blocks.[15]

Table 1.2: Metrics normalized by # blocks

Normalized by number of Blocks

# bus creators # bus selectors
# computationally expensive blocks # data store memory
# data store memory without read access # data store memory without write access
# data store read # data store write
# disabled and unresolvable library links # disabled library links
# disabled library links with modi�ed
structure

# froms

# global goto blocks # gotos
# ground blocks # library links
# magic constant uses # magic constant values
# named constants # potential data typing problems
# saturates # state�ow blocks
# subsystem annotations # targetlink errors
# targetlink functions # targetlink warnings
# terminator blocks # unit delays
# unit delays in forward direction # unused results
# used block types # used dd variables1

# used libraries # violated misra guidelines
global complexity # crossed lines
# line annotations # lines

Metrics displayed in the table below (Table 1.3) are not required to be normal-
ized, as they are independent of the model size.

Table 1.3: Averages

Averages

øannotation length øbus size
øgeometric signal length øindependent paths
øinput interface width øinstability of block
øinterconnectedness ølocal complexity
øoutport connections øoutput interface width

1dd stands for data dictionary.
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øsignal length østate�ow state count
øsubsystem child count øsubsystem screen height
øsubsystem screen width

Metrics shown in Table 1.3 placed a zero-value for all investigated models. They
have been excluded from all calculations after this step was completed. The purpose
for the absence of values is that most of these measurements require external data
�les or need to be manually entered. None of these �les were available. However,
the MBE tool includes these metrics within the rating. In Chapter Four, the e�ect
of including these metrics on the rating reliability is discussed.

Table 1.4: Metrics which maintain zero value due to lack of data.

No value

# violated d space guidelines # architecture violations
# con�gurable subsystems # custom code blocks
# model infos # ports without dd entry
# range violations # requirements
# scalings without dd entry # switch subsystems
# targetlink block saturates # test cases
# unreachable states # used dd types
# used modeling patterns Passed test cases
Requirements coverage Test coverage
Worst case execution time

After the normalization of metrics, values were scaled to be between zero and
one by dividing the values of metrics within all models by the maximum value.

The �gure below (Figure 1.4) displays how the data is reshaped in a homogeneous
fashion rather than in the aforementioned, which can be seen in Figure 1.3. The
shape represents the sixty-two metrics for the key eight models focused on within
this research.

Figure 1.3: The sixty-two metrics for the main eight models
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• Models: The total number of the investigated models used in this research is
thirty-six. These models are a subset of one of the development repositories which
contains over seventy models. The chosen models maintain a similar structure in
terms of Autosar components. The MBE tool was used to calculate and �nd all
metrics for these models. Out of the thirty-six models are the eight models used
within Sheible's work.

This research focuses on these eight models, due to an extensive knowledge in
comparison to the other models. The remaining models were also used to test the
tool sensitivity to changes within the reference measurement database and their
measurements for the principle component analysis on all metrics. For four of the
models, the tool aborted operations whilst calculations for a particular metric, there-
fore they have been excluded.
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Chapter 2

Related Work and Mathematical

Foundations

The issue of failure prediction based on quality metrics is a rich topic in software quality
engineering. There is a focus on object-oriented metrics. There are only a few, particular
papers focusing on model metrics. This chapter aims to illustrate the most signi�cant
hypothesis which aimed to be validated by this research.

The purpose of this is to show the value and popularity of this topic, but also to
display the level of di�culty in grasping strong correlations between metrics and failures.
There is a wide variance of metrics and mathematical approaches to aggregate the data.

The last section of this chapter provides an overview of the most utilized metrics
and average the opportunity to highlight the di�erence between spearman and person
correlation.

2.1 Research on validation of software metrics as qual-

ity indicators

Most research on this topic follow the same three-step building sequence. A fundamental
�rst step must be to de�ne the metrics to be measured, the hypothesis of the relationships
between the aforementioned metrics, and failure occurrence. The second step consists of
constructing and presenting the mathematical model of how data will be aggregated.
Additionally, metrics must be measured and targeted projects must be de�ned.

The third and �nal step is obtaining the results. It must be determined whether the
hypothesis holds true or fails and the reasoning as to why. The same sequence is followed
in presenting the extracted work from related papers within this study.

Main metrics to be targeted when mining the metrics of object-oriented projects are
some or all of the CK metrics suite.[11, 19, 5] CK refers to Shyam R. Chidamber and
Chris F.Kemerer, who in 1994 introduced six metrics for the object-oriented design.[17]
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Further targeted metrics are also object-oriented metrics as couple cohesion and in-
heritance. Cohesion measures the strength of the relation between the functionalities of a
model.[10] In general, most metrics are centered around concepts of complexity, cohesion,
inheritance, and measurement of size.[22, 4, 20]

An example of the hypothesis tested by an abundance of researchers is also similar.
It is almost always assumed that the increase of complexity metrics correlates with the
number of post-release failure. As do the weighted methods per class, coupling between
object classes from the CK suite.[19, 11]

Researchers tend to target software issues of projects developed within their respective
companies. For example, Internet Explorer, Process Messaging Component, DirectX, and
Net Meeting, among other projects.[11, 13, 12] Due to researchers targeting only a limited
set of projects developed in their own companies within the same �eld, the validity of the
data is threatened. This concern is further discussed within the �nal chapter.

Challenges for researchers exceed �nding correlations and validating hypothesis. The
most comprehensive challenge is to form a set of metrics which consistently correlate with
the failure and conjoin the aspect of analysis with additional projects.[11]

2.2 Research on model metrics and model quality rat-

ing

Due to research on model metrics being signi�cantly less prominent than on object-
oriented metrics, supplemented studies are few and far between. One question which
arises is whether �ndings will be di�erent if the same metric is measured �rstly on the
model and secondly on the automatically generated code from the model.

In Prabhu's [14] workfocusing on complexity metrics, he shows that metrics correlate
strongly when they are measured on the code and on the model. Prabhu's study regards
this conclusion as a possible improvement on the quality of outsourcing within the auto-
motive industry. This is due to the ease of software quality prediction through measuring
metrics for the model prior to software development.

Sheible's work is central in terms of model quality through the tool he developed. This
study and the research within it, is highly dependent on Sheible's tool. Chapter Four and
Chapter Five attempt to validate the tool as ratings and of metrics as quality indicators.

The illustration in Figure 2.1 is taken directly from Sheible's thesis, documenting the
MBE tool.[15][p 100] The illustration demonstrates how the tool handles both model data
and measurements' database.
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Figure 2.1: MBE tool prototype structure

2.3 Mathematical techniques of processing and aggre-

gating software, and model statistics

Validating the metrics as quality indicators is done be calculating the correlation between
the metrics of an entity and the failures reported from the same entity. Section 1.3
presented the preparation of metrics to be used in the correlation calculations.

This research adopts the spearman ranking as the main technique in �nding corre-
lations between di�erent entities. Pearson correlation is also used when possible, but
not often. One of the reasons why is due to parts of the data obtained are originally a
ranking, opposed to a raw value. Additionally, the pearson correlation is more sensitive
to nonlinearity than the spearman ranking. This is due to di�erent formulas for each
ranking.[9, 18]

Other methods utilized in analyzing metrics' data are related to outliers and principal
component analysis, focusing on relations between metric sets and attempting to reduce
dimensions and increase coherence. Additionally, in attempt to see which subsets of
metrics e�ect and represent the rest of the data.[1, 16, 10, 11]

The spearman correlation coe�cient is simply calculated by:

ρ = 1− 6
∑
di

2

n(n2 − 1)

where di = xi − yi , xi being the �rst rank and yi being the other rank.
10



Chapter 3

Impacts on Model Quality

Modeling is a vital process for the development of the ECU components within the au-
tomotive industry. The increasing role of the ECU and its participation in all the oper-
ations inside the automotive system increases the sensitivity of safety, functionality, and
e�ciency within an automobile to the quality of the ECU and the software components
they contain.

The quality of the ECU relates to how successful the unit is in executing all operations
and functions it is expected to execute. Any failure of an ECU is caused by one or both
of hardware or software problem. This study focuses on the quality of embedded software
components implemented through Matlab Simulink. Therefore, the primary consideration
of failures are from a defect in the software, more speci�cally within the model(s).

This chapter illustrates root causes of defects in the model. These root causes may
belong to any stage or procedure of the model development and implementation. We
begin by exploring the varying key parts of model development, and continue by mapping
some of the metrics measured in this study to the root causes of the defect.

Mapping the measurements to the root causes and impact factors on the model quality
will enable us to drive legitimate hypothesis regarding the relations between the model
metrics and the amount of bugs in the �nal product. Utilizing the in�uence diagram will
support the grouping and reduction of the di�erent metrics and roots to simpler and more
measurable values.

3.1 Prevention techniques

The quality of the model is e�ected by techniques used to prevent the occurrence of
errors during production and in �nding defects during testing and prototyping. This
section seeks to explain a few of these techniques.

Guidelines: The objective of using guidelines is to reduce human error. Additionally,
to avoid repeating any cause of defects which were previously identi�ed. Guidelines
refers to di�erent sets of instructions, rules, and prohibitions to be considered by
developers while developing models.

11



Violations to guidelines are expected to be strong indicators of model quality. It
is assumed that a number of violations correlate positively with proneness to failure,
or negatively with model quality.

Model checking: This is used to algorithmically check whether a model satis�es a spec-
i�cation. In general, model checking is an independent, on-going process, aiming to
maintain the quality of libraries used in implementing a model.[6]

Model checking contributes to the quality of the model. It is vital that produced
models match requirements and speci�cations. It is equally important for the struc-
ture of a model to enable checkers to reach every state, and furthermore, to check
every property, ensuring compatibility.

Static Analysis: This refers to a family of techniques within program analysis, in which
a program is not actually executed, but rather analyzed through tools in order to
produce useful information about the program itself.

Static analysis is used to uncover bugs or potential defects, as well as basic
statistics and measurements regarding the program. From these statistics, code
metrics may be calculated.

Testing: This refers to the process of product execution to identify the di�erence between
actual and expected behavior. Bugs which are found during testing are important
in order to ensure enhancement of the product.

The tests' reachability, coverage, and the number of test cases are vital indicators.
Discovering bugs during the testing process could provoke quality improvement if
the bug is deciphered, but it can also indicate a failure of static analysis. Therefore,
it is possible to �nd additional bugs during the testing process itself.

3.2 Changes

An additional group of factors which may in�uence the quality of a model are project
changes. Whether the change consists of �xing bugs or of altered release changes on the
model, they may create possibilities for secondary bugs.

However, �xing pre-existing bugs in a model is assumed to increase quality. The major
issue is whether �xing bugs leads to changes outside the root cause of the bugs. Therefore,
these changes may formulate supplementary impacts on quality.

Model Reuse: This refers to the same model used in variant modeling contexts. In other
words, a distinctive domain-speci�c modeling language. Changes may be introduced
to a model in order for it to because reusable. These changes may reproduce defects
or e�ect the overall quality of the model.[21]

Feature Requests: This refers to changes, which might be a response to requests from
users or a test group.

Fixed Bugs: This refers to changes applied on a program to �x or exclude errors.

12



3.3 Impacts on understanding

Product quality is dependent on a developer's understanding of requirements and users'
understanding of application and usage. Many external factors may e�ect understanding.

Although impacts are di�cult to measure, they are determinant in terms of model
quality. With su�cient information from project management and after sales, they may
become measurable.

Cascading of development stages: This speci�cally refers to how well results of each
development stage passes to the next.

Product: Many factors may e�ect product comprehension:

• Readability: refers to naming styles and formatting consistency.

• Architecture: refers to the documentation, subsystems' mapping, concepts,
and interfaces (call/write violations).

• Use of multiple languages or modeling domains: The use of multiple language
and modeling domain variations may e�ect product comprehension.

• Requirements: refers to the amount of requirements and detail level.

Project: This refers to the number of developers working on the project, including their
background and experience. This takes into account at which stage a developer
joined the project and the e�ciency of communication and collaboration between
team members. Additionally, this factor takes into consideration if team members
have been changed or replaced. Furthermore, this factor also regards the available
resources, such as time, budget, etc.

3.4 Mapping and measurability of impacts on model

quality

This section aims to map the most useful metrics based on experimental work to the
in�uence diagram. By mapping these metrics, we can understand and rationalize the
relation between the entities represented by these metrics and the probability of failure.
Table 3.1 demonstrates the correspondence of metrics with the in�uence diagram.

Unfortunately, the majority of the few metrics in the Table 3.1 couldn't be calculated
due to a lack of information. Based on the assumptions mapped in the in�uence diagram,
Section 6.2 Interprets between MBE metrics and ,failure reports, and experts opinion.

13



Table 3.1: Mapping of sample MBE tool metrics to the in�uence diagram.
Section Impact factor Correspondent metric
Prevention techniques Guidelines #targetlink warnings

#violated misra guidelines
#violated d space guidelines

Testing Test coverage
Passed test cases
#test cases
#unreachable states

Understanding Architecture #range violations
#architecture violations

Requirements Requirements coverage
Changes Instability of block

Figure 3.1: In�uence Diagram
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Chapter 4

Validation of MBE Tool as Quality

Rater of Simulink Models

This chapter provides a validation of the use of metrics, ratings, and �ndings of the MBE
tool, and MBE thesis. Metrics for models in this study are calculated using the MBE
tool. Furthermore, this chapter demonstrates a deeper understanding and critique of the
rating processes' internal steps, both methodological and mathematical.

4.1 Main functions of the MBE tool

The model quality rating tool is multi-step. The �rst stage consists of measuring metrics
for every model. Measuring the metrics for a model requires a set of information �les. The
models are imported as (mdlx) �les rather than (mdl) �les. Additional �les are required
within the second stage. The rating of the model quality is the �nal stage.[15]. (See
Figure 2.1)

The second stage involves the construction of a reference measurement database, rep-
resenting a reference to which the rated model is compared and a scale to which the
metrics of one model are normalized. The last stage consists of the aggregation of metrics
supported with visualization utilities, enhancing the understanding of the strengths and
weaknesses of the rated model.

4.2 Tests on the methods and �ndings of the tool

Provided su�cient data availability, the MBE tool is generally dynamic and compre-
hensive in terms measurement administration. Yet, the main criticisms of the tool are
concerned with what follows measuring model metrics.

Some concerns are methodological, others mathematical. All concerns formulate two
questions: Does the rating of the tool always correlate with the experts opinion? Does
the mathematical processing of the data e�ect the validity of the metrics?
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4.2.1 Methodological concerns

1. Database content

The database represents the main reference for rating and normalization. It
is fundamental to understand how the database itself is built and what the its
components consist of. The database, at the very least, requires the measures of
three models; none of which is the actual model to be rated. There is no maximum
limit on the size of the database.

From the available measures for the models included in the database, the arith-
metic mean is extracted and then the measurements of every metric for all models
are normalized to the mean. The output values are what the model rating depends
on. The test demonstrated the change of the amount and types of models included
in the database for rating a single model resulted into a remarkable shift in the �nal
rating of the model.

Figure 4.1 displays the change of rating between 50% and 80% following the
database size changing from three to thirty-one models.

Figure 4.1: The quality rating of four models changes with the database size

Figure 4.2 demonstrates how change decreases when database size increases.
Overall, when a database size exceeds ten models, a model's quality rating shows
more stability.
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Figure 4.2: The change in the quality rating of four models according to the change in
database size

2. Experts Opinion

Within his thesis, Sheible presents a remarkably high correlation between the tool
ranking and the experts ranking of a selected set of models. After recalculating the
rating of the same model to di�erent versions of reference measurement databases,
this �nding did not hold true.

Table 4.1 and Figure 4.3 demonstrate the correlation change between experts
ranking and the MBE tool ranking. The main conclusion is that these two entities
do not always correlate, and furthermore, that there may be a possible database
formation to be considered corrupted or having a negative e�ect on quality ranking.
The same is implied for failure reports ranking.

The �rst ranking corresponds to the one presented in the MBE thesis.[15] The
database consists of the same eight models focused on within this study. When a
model is rated, it is compared to the other seven models.

The second ranking is in comparison to a database of three models. It represents
what could be deemed as the worst case scenario for a database, involving the
minimum possible size.

In the �nal ranking, each of the eight models are rated in comparison to the
additional twenty-four models.
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Table 4.1: The correlation between experts ranking and MBE tool ranking
Database size Database stability spearman correlation
7 models instable, dependent 0,92
3 models stable,independent 0,31
24 models stable, independent 0,14

Figure 4.3: The correlation between the tool and the failure reports ranking (blue,left)
and the correlation between the tool and experts ranking (red,right)

4.2.2 Mathematical concerns

This section traces the processes performed on data. The objective is to uncover any steps
which may e�ect data credibility or usability.

1. Replacing missing data in the model measurer

The required data for at least ten metrics need to be entered manually. The
tool substitutes these values with zeros when no data is provided. This procedure
of compensation is not neutral. It directly e�ects the rating of the model by a set
of false positive. These values are explained in greater detail further on within the
study.

2. Metric normalization in the database builder

Building the database is a vital step for the remainder of the tool work. The
database acts as a reference to which the model is compared and rated. Therefore,
it is vital to understand two pressing determinants. First, any modi�cations on
numbers and second, why the size and contents of the database are paramount
within the �nal rating.
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In the MBE tool, the reference measurement database builder uses the global
complexity as normalization factor. However, global complexity is not exactly a
measurement that represent the size as the #blocks or #subsystems do. Also,
according to our assumptions global complexity is an important measurement and
using it for normalization may reduce its usability in the aggregation of the quality
rating.

3. Metrics scaling in the quality rater

Prior to metric aggregation in the last step of quality rating, every metric is
rated individually with a value between zero and one. This value is determined
by comparing a metric's original value to the reference, which in this case is the
database. Several threats and concerns appear in this stage. Mainly, the concern
is how to deal with a measurement outside its own boundaries and how the tool
evaluates the metric value of zero when both boundaries are zero.

4. Metrics aggregation in the quality rater

The �nal step of rating is the aggregation. The aggregation is performed using
the formula set forth in Sheible's thesis. Several questions arise at this stage: Does
the multi-step aggregation lead to a di�erent result than one-step aggregation? Does
the grouping of metrics based on category and de�nition e�ect the rating result or
is the result independent of grouping and categorization?[15, 8]

The following equation is the equation used to aggregate the metrics:

Exponent=1; Threshold = 20%

AggregatedEvaluation =

∑
i evaluationi

#evaluation︸ ︷︷ ︸
Arithmeticmean

.

(
#evaluationsoverThreshold

#evaluations

)
︸ ︷︷ ︸

Dampingfactor

Exponent
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Chapter 5

Validation of MBE Metrics As Quality

Indicators

The documentation of the MBE tool[15] introduces the correlation between the tool qual-
ity rating and expert opinions on eight of the models. This study investigates the cor-
relations between three main entities: the rating extracted from failure reports, expert
opinions, and the tool quality rating(s) on di�erent reference measurement databases.
The intent of this chapter is to assess the validity and coherence between the tool ranking
and the ranking provided by other indicators.

The absence of correlation between these entities may be attributed to varying causes
to be discussed within the last chapter of this study. None of the three entities is fully
reliable. Many issues emerged while questioning the su�ciency of expert rankings and
to what level failure reports from after sales form a reference in order to compare other
rankings with it.

5.1 Mining the failure reports

This study collected all available reports on failures in the functionalities controlled by
an ECU which contain any of the eight models mentioned above. The reports were then
interpreted for purposes of conversion from their original, written description into numeric
values in order to rank the models according to their `failure score'.

The after sale department reports complications and provides a wide range of data
regarding its level of importance, timing, and a written description of the problem. Taking
into consideration all provided information, this study deliberates four speci�c entries:
amount of problems reports, their occurrence, priority, and severity.[3] A demonstrative
example of the failure reporting scoring system for every model may be seen in Table 5.1.

failurescore = (Occurrence)︸ ︷︷ ︸
1,2,3,4

. (Priority)︸ ︷︷ ︸
1,2,3,4

. (Severity)︸ ︷︷ ︸
1,2,3,...,10,11
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The table below (Table 5.1) is simply an example.The values within it do not refer to
any speci�c model. The original description of the three entities was in a written format.
They have been converted with consideration of avoiding zero due to the scoring formula
consisting of multiplication of the three entities. Additionally, one represents no data, as
it is a neutral value in multiplication.

Table 5.1: Example on the scoring of reported failure to rate the models
Model 00
Reported failure Occurrence Priority Severity Score sum Normalized by

#Blocks
11 1 3 11 33 346 3,46
12 1 3 5 15
13 1 3 5 15
14 2 4 5 40
15 4 4 5 80
16 1 3 5 15
17 1 4 11 44
18 4 3 5 60
19 4 1 11 44

Figure 5.1 displays the rating and scoring of models focused on within this chapter.

Figure 5.1: Failure reports rating and model quality ranking

5.2 Correlations with failure reports ranking

This section aims to validate the use of failure reports ranking and experts ranking by
correlating them to each other and the tool. This adopts the tool ranking based on
twenty-four models, used as the reference measurement database.
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Table 5.2 demonstrates the rating of models based on experts ranking and bug rating
based on an interpretation of failure reports. The correlation between both rankings
is `0,67'. On a reliability level for both rankings, a moderately positive correlation is
indicated.[9] Additionally, this further supports both rankings as valid, comparative to a
model's metrics and tool ranking.

Table 5.2: Failure reports ranking vs. experts ranking

Model1 Failure reports
rating

Failure reports
Ranking

Experts Ranking Spearman
Correlation

1 02 1 2
3 0,55 3 1
5 1,47 5 4
2 0,069 2 3
8 6,2 8 7
6 1,635 6 6
7 0,836 4 8
4 1,97 7 5

0,67

Figure 5.2: Failure reports ranking vs. experts ranking

Table 5.3 and Figure 5.3 correlate the failure reports ranking with the MBE tool
ranking. The table shows no signi�cant correlation existing between the tool ranking and
the failure reports ranking.
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Table 5.3: Correlations between MBE tool and failure reports
Model MBE tool3 Failure

reports
pearson
ranking

spearman
ranking

rating ranking rating ranking
1 0,73 1 0 1
3 0,55 6 0,55 3
5 0,69 3 1,47 5
2 0,47 7 0,069 2
8 0,71 2 6,2 8
6 0,69 4 1,635 6
7 0,41 8 0,836 4
4 0,69 5 1,97 7 -0,02 -0,17

Figure 5.3: Correlations between MBE tool and failure reports. Spearman (blue, dots).
Pearson (red, squares).

5.3 Correlations of MBE metrics and MBE tool rank-

ing

This section presents the correlation between the MBE metrics and the MBE ranking.
The objective is to understand which metrics are more in�uential on the �nal quality
rating measured by the tool.

1Though models are listed in alphabetical order, they are display as numeric values for purposes of
data protection.

3Through an independent database of twenty-four models.
2No errors in the available reports.
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Figure 5.4 visualizes the aforementioned correlations, displaying metrics which gave
similar rankings of the MBE tool. Table 5.4 shows the metrics that correlate moderately
or strongly with the MBE tool quality ranking.

Every metric was used to rank the models. The model with the smallest metric
is ranked as one (representing the optimum) and the model with the highest metric is
ranked eight (representing the worst).

The metric ranking is interpreted as the following: When a metric correlates positively,
it signi�es the lower a metric is, the better its quality. When a metric correlates negatively,
it signi�es the higher a metric is, the better its quality.

Table 5.4: MBE metrics that correlate moderately or strongly with MBE tool ranking

# MBE metric spearman
correlation

# MBE metric spearman
correlation

56 øoutput interface width 0,85 60 øsubsystem screen height 0,83
5 #clones 0,81 53 øinterconnectedness 0,80
16 #disabled library links

with modi�ed structure
-0,77 15 #disabled library links -0,76

51 øinput interface width 0,70 20 #internal states 0,684524
59 øsubsystem child count 0,68 58 østate�ow state count -0,62
27 #named constants -0,59 52 øinstability of block 0,57
37 #testable subsystems

with incoming buses
0,54 8 #cycles 0,5

Figure 5.4: Absolute correlations between MBE tool metrics and MBE tool quality rank-
ing.
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5.4 Correlations of MBE metrics and Failure reports

The objective of this section is to �nd a set of metrics correlating with failure reports
ranking and utilize this set as a group of indicators on model quality and failure proba-
bility.

Table 5.5 and Figure 5.5 show correlations beginning with the metric showing the high-
est absolute correlation. Metrics which displayed weak correlations have been excluded.
Figure 5.5 visualize the same correlation, focuses on absolute values of correlations, and
excluding the signs of correlations.

Table 5.5: MBE metrics that correlate moderately or strongly with failure reports ranking

# MBE metric spearman
correlation

# MBE metric spearman
correlation

25 #magic constant uses -0,77 45 depth of subsystem hier-
archy

0,74

31 #state�ow blocks 0,72 50 øindependent paths 0,71
43 #used libraries 0,71 9 #data store memory -0,67
28 #potential data typing

problems
0,66 30 #signal routing subsys-

tems
0,66

34 #targetlink warnings 0,66 41 #used block types 0,64
35 #terminator blocks -0,62 49 øgeometric signal length -0,62
57 øsignal length -0,62 26 #magic constant values 0,62
40 #unused results -0,60 21 #library links 0,57
13 #data store write -0,54

Figure 5.5: Absolute correlations between MBE metrics and failure reports.png
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5.5 Correlations of MBE metrics and experts ranking

This section aims to �nd a set of metrics which indicate model quality base on correlation
between metric ranking and experts ranking. Table 5.6 displays metrics which correlate
moderately or strongly with experts ranking. Figure 5.6 visualize correlations in absolute
values, excluding the signs of correlations.

Table 5.6: MBE metrics that correlate moderately or strongly with experts ranking

# MBE metric spearman
correlation

# MBE metric spearman
correlation

25 # magic constant uses -0,89 11 # data store memory
without write access

0,83

30 # signal routing subsys-
tems

0,78 32 # subsystem annotations -0,76

61 øsubsystem screen width -0,73 35 # terminator blocks -0,75
20 # internal states 0,71 50 øindependent paths 0,70
57 øsignal length -0,70 59 øsubsystem child count 0,69
2 # atomic subsystems -0,67 42 # used dd variables -0,67
58 østate�ow state count -0,65 13 # data store write -0,64
40 # unused results -0,64 12 # data store read -0,61
8 # cycles 0,57 1 # arithmetic subsystems -0,56
27 # named constants -0,55 45 ødepth of subsystem hier-

archy
0,54

9 # data store memory -0,54 36 #testable subsystems 0,53
23 # lines -0,52 with implicit inport data

types
55 øoutport connections 0,51 22 # line annotations -0,5

Figure 5.6: Absolute correlations between MBE tool and failure reports.
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5.6 Validation of subset of MBE metrics as Quality in-

dicators

Based on the correlations found in Section 5.4 and Section 5.5, the objective is to construct
a list of metrics correlating with both entities; failure reports and experts opinion. Table
5.7 represents the calculation of the average correlation with both entities.

Table 5.7: MBE metrics which have strong or moderate øcorrelations with experts and
failure reports ranking

# MBE metric spearman
correlation

# MBE metric spearman
correlation

25 #magic constant uses -0,84
30 #signal routing subsys-

tems
0,73 50 øindependent paths 0,70

35 #terminator blocks -0,67 11 #data storememory
without write access

0,66

57 øsignal length -0,65 45 depth of subsystem hier-
archy

0,64

40 #unused results -0,62 9 #data store memory -0,61
13 #data store write -0,60 42 #used dd variables -0,57
32 #subsystem annotations -0,55 12 #data store read -0,54
1 #arithmetic subsystems -0,51 36 #testable subsystems

with implicit inport data
types

0,51

20 #internal states 0,50 2 #atomic subsystems -0,49

Figure 5.7: Absolute values of MBE metrics which have moderate or strong average
correlation with experts and failure reports ranking.
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Chapter 6

Conclusion and Discussion

The previous chapters presented the theoretical research and the mathematical analysis,
which were done in order to �nd a set of metrics that indicate model quality. Chapter One
and Chapter Two illustrated main concepts, tools, and related work, which this research
is built upon. Based on related work, Chapter Three displayed the assumptions of factors
and their impact on model quality.

Prior to presenting calculations within Chapter Five, Chapter Four validated the MBE
tool and critically analyzes its methodology and mathematical structure. The predomi-
nately experimental portion of this research is located within Chapter Five. Chapter Five
gave a detailed presentation and visualization of meaningful calculations.

This chapter summarizes and analyzes the most signi�cant �ndings within this re-
search. Furthermore, it provides a critique of data sources and highlights both weaknesses
and strengths. Moreover, it discusses the prospect of utilizing these �ndings in the future,
o�ering a window of improvement for results to increase robustness of data sources.

6.1 Results and Findings

This section summarizes the main �ndings in the same sequence of the research.

• In�uence Diagram:

The in�uence diagram maps factors which e�ect quality. Provided su�cient
measurement, it holds the potential to become probability network. The probability
network would systematize the prediction of model quality based on the factors'
values and weights. However, using probability networks require much more data
and needs the impact factors to be measured accurately.[7]

• MBE tool:

The MBE tool is powerful in terms of the detailed metrics it provides. However,
the rating functionality within the tool is extremely sensitive and requires special
attention within the construction of the reference measurement database.
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• Experts ranking and failure reports ranking:

The experts ranking and failure reports ranking have not always correlated with
the MBE tool ranking. Nevertheless, they correlated with each other, therefore,
making them safe indicators for model quality..

6.2 Interpretation of validated metrics

Based on calculations within Section 5.6, metrics in Table 5.7 may be considered valid
indicators of model quality. Table 6.2.1, Table 6.3, and Table 6.2.3 display these metrics
and interpret their correlations.

Metrics rank models in ascending order; i.e. the best rank is for a model with the
lowest metric. Accordingly, in the case of positive correlation, low metric indicates high
quality while a high metric indicates low quality.

6.2.1 Metric with positive correlation

Table 6.2.1 displays the metrics that correlated positively associated with the interpreta-
tion of the result for each metric. The positive correlation implies that using the entities
measured by these metrics decrease the quality of the model.

Table 6.1: Interpretation of positively correlated metrics.

# MBE metric spearman
correlation

Interpretation

30 #signal routing subsys-
tems

0,73 This implies using less subsystems en-
hance the quality. We have no pri-
mary assumption regarding this met-
ric.However, signal routing is a kind of
reusing the signal. Therefore, th

50 øindependent paths 0,70 Independent paths map conceptually
with complexity. Based on this corre-
lation less independent paths lead to
better model quality

11 #data store memory
without write access

0,66 This implies that limiting the access
to the data store memory to the the
blocks in its same subsystem enhance
the quality and it corresponds posi-
tively to our assumption.
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45 depth of subsystem hier-
archy

0,64 this metric represents complexity.
Deeper is worse in term of model qual-
ity. This support our assumption

36 #testable subsystems
with implicit inport data
types

0,51 More testable subsystem indicates
here to worse quality which contradict
our assumption about the testability
increasing the quality.

20 #internal states 0,50 Internal states represents complexity.
Therefore, this metric also supports
the assumptions

6.2.2 Metric with negative correlation

In the case of negative correlation, low metric indicates low quality while high metric
indicates high quality. Table 6.3 displays the metrics that correlated negatively associated
with the interpretation of the result for each metric. The negative correlation implies that
using the entities measured by these metrics increase the quality of the model.

Table 6.3: Interpretation of negatively correlated metrics.

# MBE metric spearman
correlation

Interpretation

25
#magic constant uses -0,84 The use of magic constants is expected

to decrease the quality but this metric
strongly suggests the opposite.

35 #terminator blocks -0,67 These blocks terminate unconnected
outputs. The correlation implies that
more of these blocks increases the
quality. however, terminator blocks
and terminated outputs indicate on
the use of blocks with unnecessary
output or not using an existing out-
put. This correlation contradicts our
assumption.

57 øsignal length -0,65 Signal length is a size measure. The
correlation implies that high signal
length indicate bitter quality.

40 #unused results -0,62 Unused results as in terminator blocks,
whether it is primely unnecessary or it
should be used but it's not. Theoret-
ically, this correlation contradict our
assumptions
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9 #data store memory -0,61 More data store memory means is un-
derstood as the existence of data store
memory on subsystem levels not on
top level . Which positivly correspond
to our assumption

13 #data store write -0,60 This �nding implies that the quality
increase with the increment of this en-
tity. This �nding is not expected or
mapped to any assumption.

42 #used dd variables -0,57 This �nding match our expectations.
Using more data dictionary variables
improves the quality.

32 #subsystem annotations -0,55 This correlation is not mapped to any
assumption or impact factor. It repre-
sents the model statistically and re�ect
the size of the model.

12 #data store read -0,54 This �nding implies that the quality
increase with the increment of this en-
tity. This �nding is not expected or
mapped to any assumption.

1 #arithmetic subsystems -0,51 This correlation is not mapped to any
assumption or impact factor. It repre-
sents the model statistically and re�ect
the size of the model.

6.2.3 Metrics with weak or no correlation

Out of sixty-one validated metrics seventeen metrics did not positively or negatively cor-
relate, or weakly correlated (Less than |50%|). Table 6.2.3 displays these metrics and
interpret their correlations. Generally, the value of metrics does not indicate model qual-
ity. In other words, the quality is independent from metric value.

Several metrics in the Table 6.2.3 represents key factors of impact which were assumed
to e�ect model quality (i.e. øinstability of block and global complexity).

The absence of correlation between these metrics and the model quality can be referred
to many factors. The calculation methods used in evaluating these metrics may de�er
from the methods which are used in the related work that we built our assumption upon.
Other reason could be the lack of the data from the source �les or loss of data during
normalization. The other interpretation implies our assumptions earlier are not accurate.

Other metrics in Table 6.2.3 measure simple statistics of di�erent block types and
functions (i.e. # global goto blocks and target link functions) and the graphical geometry
of the model (i.e. øoutput interface width and øsubsystem screen height). may be useful
if acting as a descriptive group for a model, however, they do not have the ability to
indicate model quality as individual values.
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Table 6.4: Metrics with weak or no correlation

# MBE metric spearman
correlation

# MBE metric spearman
correlation

43 #used libraries 0,49 2 #atomic subsystems -0,49
61 øsubsystem screen width -0,48 41 #used block types 0,46
59 øsubsystem child count 0,45 49 øgeometric signal length -0,45
27 #named constants -0,44 26 #magic constant values 0,43
31 #state�ow blocks 0,43 58 østate�ow state count -0,43
54 ølocal complexity -0,42 28 #potential data typing

problems
0,40

34 #targetlink warnings 0,37 8 #cycles 0,36
14 #disabled and unresolv-

able library links
0,33 21 #library links 0,33

23 #lines -0,32 24 #logic subsystems 0,31
6 #computationally expen-

sive blocks
-0,30 37 #testable subsystems

with incoming buses
0,29

22 #line annotations -0,27 19 #gotos 0,25
44 #violated misra guide-

lines
-0,23 5 #clones 0,21

17 #froms 0,21 55 øoutport connections 0,20
4 #bus selectors -0,17 56 øoutput interface width 0,17
38 #unit delays -0,15 10 #data store memory

without read access
0,14

16 #disabled library links
with modi�ed structure

-0,13 60 øsubsystem screen height -0,10

53 øinterconnectedness 0,10 18 #global goto blocks 0,10
15 #disabled library links 0,10 52 øinstability of block 0,08
46 global complexity -0,07 29 #saturates 0,05
48 øbus size 0,04 39 #unit delays in forward

direction
0,04

47 øannotation length -0,02 7 #crossed lines -0,01
33 #targetlink functions -0,01 51 øinput interface width 0,00

The validated assumption in this section states that the metrics with moderate and
strong correlations may indicate model quality and aggregate to the rate of model quality.
Additionally, these models may be integrated into a guideline utilizing these �ndings in
order to enhance the model development process.

6.3 Quality of data sources and their threats to validity

This section highlights key threats for both main validity and data source quality used
within the research.

• Targeted models:

Due to the amount of provided information, this research focuses on eight models.
The �ndings have potential to be more robust and reliable if a larger validation group
was available. Also, the reference database will have more reliability with larger
amount of models used to build the reference reference measurement database.
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• Model measurements:

The quality of the MBE tool is high considering the metrics. The main concern
is due to many metrics requiring external data �les that were unattainable. The
exclusion of these metrics resulted in a loss of data, which may have e�ected results.
Although assumptions regarding the impact of these metrics cannot be validated
due to their inability of being calculated.

• Failure reports:

Although failure reports are considered a reasonable reference, ranking based
on them can be more robust provided additional reports and further details within
them. In the next section (Section 6.4) the prospect of improving these reports is
discussed.

• Experts ranking:

This ranking could vary based on the background of inquired experts. This
entity is subject of human error.

6.4 Future work

This section discusses the prospect of improvement within this research.

• MBE tool:

A set of guidelines may be followed to enhance the tool's performance.

1. Database size: The database should contain more than ten models in order to
deliver a more stable rating.

2. Database content: The database should not include any of the evaluated models
when a set of models are rated in conjunction.

3. Manual entry of metrics: Metrics that are not automatically calculated should
be entered manually to protect the rating from compensation applied by the
tool.

• Resource Expansion:

A major potential in improving research results is to inquire more data on all pos-
sible levels, targeting additional models to increase reliability, measuring additional
metrics to increase usability, asking more experts' opinions to create a stronger base
for comparisons, and �nally, to collect more failure reports and uniform the time
period in which failures were reported.

• Rating the model quality based on correlated metrics:

The list of correlated metrics could be aggregated to rate the quality of the model.
Mainly, this subset of metrics is an alternative to the complete set of metrics used in
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the quality rating. Also, the correlations between the MBE metrics and the general
MBE tool rating presented in Section 5.3 could be utilized to support this expansion.

• Test the �ndings for di�erent models and di�erent projects:

In order to make the �ndings of this research more reliable, the �ndings can be
tested against di�erent models and projects. If the same metrics correlate similarly
regardless of the model or the project, then these �ndings can be generalized .

• Principal Component Analysis and Probability Network:

Further analysis of data may be done by interpreting metrics using PCA. Addi-
tionally, using a probability network to map metrics as numerical values and predict
quality based on these maps.[7]

The optimum scenario for the development of this work includes mapping a met-
ric set to the impact factors over an in�uence diagram. By using enough data, every
impact factor is assigned to a value which represents its importance or in�uence.
While metric values are provided via the model, applying both sets of values to a
probability network may lead to a measured, accurate prediction of model quality.

Summary

According to the research �ndings, there are a set of metrics which correlate with
both entities; failure reports and experts ranking. A portion of this set respond
positively to assumptions provided in the in�uence diagram. Another portion oppose
these assumptions regarding their e�ect. Within the former section, it was found
that for these �ndings to be generalized, they need to be validated and tested against
broader groups of models and projects.

Furthermore, the former section highlighted potential for integrating indicators
(validated metrics) and impact factors (in�uence diagram) into one map, or network
of probabilities, in order to predict failures and measure quality based on an accurate
evaluation of impacts and indicators.
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