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The Main Idea:

The main idea in this project is to find some new aspects , new things & to get rid of the traditional control through the micro controller.

It is made to measure the speed of any moving vehicle without having to plug the device to any wire in the vehicle , all what is required is the presence of the device inside the.
Key components :

The heart of this project is the acceleration sensor : the ADXL202 . this IC is capable of measuring static & dynamic acceleration up to 2G . it is also so sensitive that it can measure one degree of tilt. And finally it generates digital signal ( Pulse Width Modulation ) as an output which we used the CCP (Capture Compare PWM) unit in the PIC to calculate the signals pulse width.
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The second key component is the Nokia 3310 Graphical LCD . it uses the PHILIPS PCD8544 controller. The idea of using this LCD is that it is capable of displaying graphical images & also Text , it is also cheap (25 NIS) comparing to the standard (16 x 2) alpha numeric  (50NIS) , it also uses simple 5 wire interface ; the SPI port which we had to emulate its protocol through port D.
The Principle:
The principle of measuring the speed through the acceleration is to find the integral of the acceleration  (the area under the acceleration curve) & we did that by assuming that the initial speed is zero then we measure the acceleration & multiply it by the time , do all the required math then we accumulate the value to the previous speed value .
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The Programs Flow Charts:

1- the main program:
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I-initialize the Graphical LCD.

2- initialize The ADXL202 sensing
(CCP1 & CCP2).

3- initialize the timer.
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2- the calibration mode:
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3- speedometer mode:
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4- acceleration mode:
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5- tilt mode :
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The Schematic :
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Main Program Parts :
#int_CCP1

CCP1_isr()

{

   static unsigned long x_adxl_last_rise;

   restart_wdt();

   //printf("x_adxl_last_rise = %ld\n\r", x_adxl_last_rise);

   if(x_adxl_waiting_for_fall)

   {

      x_t1 = CCP_1 - x_adxl_last_rise;

      setup_ccp1(CCP_CAPTURE_RE);

      x_adxl_waiting_for_fall=FALSE;

      ///////

      //disable_interrupts(INT_CCP1);

   }

   else

   {

      x_t2 = CCP_1 - x_adxl_last_rise;

      x_adxl_last_rise = CCP_1;

      setup_ccp1(CCP_CAPTURE_FE);

      x_adxl_waiting_for_fall = TRUE;

   }

}
this part of program is designed to find the Ton & Tall of the pulses generated by the ADXL202 to use them to calculate the acceleration values.
float x_acceleration()

{

   float t;

   t = x_pw();

   t = t - x_zero_g;

   t = t / x_resolution;

   return(t);

}
this part of program is used to calculate the acceleration using the Ton & Tall values.

void write_float_eeprom(int16 address, float data)

{

   int i;

   for (i = 0; i < FLOAT_SIZE; i++)

   {

      restart_wdt();

      write_eeprom( (i+address), *(&data + i) ) ;

   }

}
float read_float_eeprom(int16 address)

{

   int i;

   float data;

   for (i = 0; i < FLOAT_SIZE; i++)

   {

      restart_wdt();

      *(&data + i) = read_eeprom( (i+address) );

   }

   return(data);

}

these program parts are responsible for reading and writhing 4Bytes floating numbers to the 1Byte eeprom .
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