AL Najah National University

Faculty of Engineering

Computer Engineering Department

The ADXL202 Application (Car SpeedoMeter)

Prepared by:

Othman Mohammad Othman

Mohammad Ameen Salman

For :
Dr. Loai Malhiees

The Main Idea:

The main idea in this project is to find some new aspects , new things & to get rid of the traditional control through the micro controller.

It is made to measure the speed of any moving vehicle without having to plug the device to any wire in the vehicle , all what is required is the presence of the device inside the.
Key components :

The heart of this project is the acceleration sensor : the ADXL202 . this IC is capable of measuring static & dynamic acceleration up to 2G . it is also so sensitive that it can measure one degree of tilt. And finally it generates digital signal (Pulse Width Modulation) as an output which we used the CCP (Capture Compare PWM) unit in the PIC to calculate the signals pulse width.

[image: image1.png]Ao sy

g

T D s
® ® ® ®
ADXL2021
— . ADXL210
i xour
. — H oemen o ¢
] oury 8
uobliTor I
HE
oscuLaTon ‘otin b4
‘ M
H
vour
f HH oemon me
VeEwoR I
—0 @
com Vo] D9
Srer

J

0550 0UTY CICLE
2= RS

The second key component is the Nokia 3310 Graphical LCD . it uses the PHILIPS PCD8544 controller. The idea of using this LCD is that it is capable of displaying graphical images & also Text , it is also cheap (25 NIS) comparing to the standard (16 x 2) alpha numeric (50NIS) , it also uses simple 5 wire interface ; the SPI port which we had to emulate its protocol through port D.
The Principle:
The principle of measuring the speed through the acceleration is to find the integral of the acceleration (the area under the acceleration curve) & we did that by assuming that the initial speed is zero then we measure the acceleration & multiply it by the time , do all the required math then we accumulate the value to the previous speed value .
[image: image2.png]lAceeleration

Tirne

The Programs Flow Charts:

1- the main program:
[image: image3.png]i

I-initialize the Graphical LCD.

2- initialize The ADXL202 sensing
(CCP1 & CCP2).

3- initialize the timer.

values not ok

v
OverFlow Timer

Calibration
3 Mode Reset Timer (—]
3
= 5
=l g E
b £3 2
3 <3
2 &
Y y. Y y.
Tilt Mode Acceleration Mode Speedometer Mode Calibration Mode.
No change
oz
£
Set the new Mode
Is new Mode No
=
%
-V
et Svsd e it il Gy of St
B rumn s s s sy o aggy

2- the calibration mode:

[image: image4.png]No

Check for
mode change
| I—

v

Read Zero Gravity

ask the user to put the device on a
fhat surface & then to press button
1

y

Read the Resolution
ask the user to put the device m a
|perpendicular postion to the earths,
surface & to rotate it 360 degree

v

Store the calibration

yalues
store the values & calculite then
store their checksum

] Wth il oy ff Smerfiveny

e — - ———

3- speedometer mode:

[image: image5.png]Get X-axis Acceleration

¥

Omit the unwanted floating
digits
(leav only two digits after
the point)

temp = the modified
acceeleration

v

Coneriolne

temp = temp * 0.8

!

Convert to (m/s)

temp = temp * time

y

“onvert to (km/s
temp = temp * 3.6

speed = speed + temp

i
End™™

4- acceleration mode:

[image: image6.png]Get X-axis Acceleration

A A

Get Y-axis Acceleration

5- tilt mode :

[image: image7.png]Get X-axis Acceleration

A A

Get Y-axis Acceleration

)

Find the X angle

x_ang = asm(x_acceleration)

y

Eind the Y angle

¥_ang = asm(y_accekration)

The Schematic :

[image: image8.png]e

Main Program Parts :
#int_CCP1

CCP1_isr()

{

 static unsigned long x_adxl_last_rise;

 restart_wdt();

 //printf("x_adxl_last_rise = %ld\n\r", x_adxl_last_rise);

 if(x_adxl_waiting_for_fall)

 {

 x_t1 = CCP_1 - x_adxl_last_rise;

 setup_ccp1(CCP_CAPTURE_RE);

 x_adxl_waiting_for_fall=FALSE;

 ///////

 //disable_interrupts(INT_CCP1);

 }

 else

 {

 x_t2 = CCP_1 - x_adxl_last_rise;

 x_adxl_last_rise = CCP_1;

 setup_ccp1(CCP_CAPTURE_FE);

 x_adxl_waiting_for_fall = TRUE;

 }

}
this part of program is designed to find the Ton & Tall of the pulses generated by the ADXL202 to use them to calculate the acceleration values.
float x_acceleration()

{

 float t;

 t = x_pw();

 t = t - x_zero_g;

 t = t / x_resolution;

 return(t);

}
this part of program is used to calculate the acceleration using the Ton & Tall values.

void write_float_eeprom(int16 address, float data)

{

 int i;

 for (i = 0; i < FLOAT_SIZE; i++)

 {

 restart_wdt();

 write_eeprom((i+address), *(&data + i)) ;

 }

}
float read_float_eeprom(int16 address)

{

 int i;

 float data;

 for (i = 0; i < FLOAT_SIZE; i++)

 {

 restart_wdt();

 *(&data + i) = read_eeprom((i+address));

 }

 return(data);

}

these program parts are responsible for reading and writhing 4Bytes floating numbers to the 1Byte eeprom .
PAGE
9

