JOmi Application (Java Code Analyzer)
By : Haneen Qasem Al-Haj Qasem
Introduction:
Jomi is a Java Code Analyzer which include a variety of standard rules in java programming .Jomi is used to detect violations in rules ,since the need to know the violations in large code with thousands of line is highly recommended. Especially when it was done before long time, or done by others.
The rules are divided into many categories. Each category has many rules which are used to detect the specific violations.
Categories:
· Basic Rules:
· Need to simplify For to while loops.

· Override equals() without hashCode() ... Better Both.

· Unnecessary Return in void method.

· return in finally block ..must avoid that !

· Unconditional If Statement.

· String Rules:
· Code containing duplicate String literals can be improved by declaring String as a constant field.

· Instantiating String objects ; this is usually unnecessary.

· Calling toString() on String objects; this is unnecessary.

· Concatenating in a StringBuffer constructor Using + instead use append().
· using toUpperCase/toLowerCase().equals() instead of Using equalsIgnoreCase() ..This will Be Slow!

· Using StringBuffer.toString().equals("") or StringBuffer.toString().length() instead StringBuffer.length().

· Using '==' or '!=' to compare strings instead of using equals().

· Variable Naming Rules including (Local Variable, Field –Global Variable- and Method Parameters):
· Field,local,or parameter are not Bet.Chars Range.

· Final variables not fully capitalized.

· Non-Final Field,Local,or Param are fully capitalized,local & Param have underscore.
· Using $ sign in a field,local,or param.

· Field name with the same name as a method.

· Not Nested ClassOrInterfaceName have the same name as field.
· Method Naming Rules:
· MethodName are not Bet.Chars Range.
· Using $ sign in MethodName.
· MethodName Not Begin with a Lower case,or has underscores.

· MethodName and return type are suspiciously close to hashCode().

· MethodName and paramsNums are suspiciously close to equals(Object).

· 'getX()' MethodName with boolReturn MustBe 'isX()'.

· Field name with the same name as a method.
· Class Naming Rules:
· ClassOrInterfaceName not begin with an upper case character.
· Using $ sign in ClassName.

· Not Nested ClassOrInterfaceName have the same name as field.

· Abstract classes Not named as 'AbstractXXX'.

· PackageName not all Fully LowerCase.
· Empty Block Rules:
· Empty try block.

· Empty catch block.

· Empty finally block.

· Empty for block.

· Empty while block.

· Empty dowhile block.

· Empty if block.

· Empty else block.
· Empty switch block.

· Empty Synchronized block.
· Optimization Rules:
· Variable that assigned once must be final.

· A method argument that is never assigned can be declared final.
· New object is created inside a loop.

· Using + in String Concatenation instead of StringBuffer For String append or String.concat.
· Using empty string literals which are being added. This is an inefficient way to convert any type to a String.
· Strict Exception Rules:
· A catch statement catch throwable and this includes errors.
· (throws Exception) in method , It is unclear which exceptions that can be thrown from the methods.
· Code throws NPE under normal circumstances. A catch block may hide the original error, causing errors..

· Catch blocks that merely rethrow a caught exception only add to code size and runtime complexity.

· Throwing Exception In Finally Block.

· Throwing New Instance of Same Exception.
· Logging Rules:
· More than one logger is used in each class.

· The Logger wasn't be declared static and final.
· System.(out|err).print is used, consider using a logger so must use instead (log.fine()).

· Using printStackTrace() ; use a logger call instead.
· Import Rules:
· Duplicated Import Statement.

· Import Lang Library (import java.lang.*).
· Too Many Static Imports.

· Import a type that lives in the same package.

Programming :
Firstly : I need to parse the java code to know the structures in it .
Secondly: now I enable to test my rules. This done by overriding the visit method in parsing in order to visit the structure I want to test its rules then show if there is a violation. This work is the most important and time consuming .

Example:
If I want to test (MethodName are not Bet.Chars Range). I need to do the following:
public static class VisitMethodName extends VoidVisitorAdapter

 {

 List<Integer> Location =new ArrayList<Integer>();

 int MinCharNum=0;

 int MaxCharNum=0;

 @Override

 public void visit(MethodDeclaration Methods,Object arg)

 {

 try

 {

 if(!(Methods.getName().length()>=MinCharNum&&Methods.getName().length()<=MaxCharNum))

 {

 Location.add(Methods.getBeginColumn());

 Location.add(Methods.getBeginLine());

 Location.add(Methods.getEndColumn());

 Location.add(Methods.getEndLine());

 }

 public List<Integer> TestMethodNaming(CompilationUnit Var,int MinCharNum,int MaxCharNum,int Option)

 {

 this.MaxCharNum=MaxCharNum;

 this.MinCharNum=MinCharNum;

 this.Option=Option;

 AllFieldsNames.clear();

 new VisitFieldName().TestFieldNaming(Var, 0,0,null,5);

 visit(Var,null);

 return Location;} }
I did it through library in order to be reusable.

Then: I integrated the library into desktop application. Here I faced many problems as the IDE I used is not flexible.

After That: I add some features to my applications such as . java code editor which enable you to edit your code and test rules immediately .also if there is a syntax error or lexical error the program will discover that.
Finally: Test my application. If you want more abstraction look at power point presentation which would give you good view.

Please Contact with Programmer for your feedback on :
 JOmi.Analyzer@gmail.com
