بسم الله الرحمن الرحيم
AN-NAJAH NATIONAL UNIVERSITY

FACULTY OF ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

Graduation Project
“Wireless Keyboard”

For

Computer Engineering Students
Student Name:

 ehab huwwari
Introduction:

For my project, we designed a wireless keyboard that uses RF to transmit signals to the computer. In my design, we use a regular, 102 key ps/2 keyboard and connect it to my transmitter circuit. On the computers side, we connect my receiver circuit to the ps/2 port on the back of the computer. With this set up, we convert a cheap ordinary keyboard into a wireless keyboard.

I have several motives for choosing this project. First of all, computers have lots of wires and cables connected to them. These include the power cable, the monitor cable, the printer cable, network cable, speaker wire, microphone input, modem lines, various USB device and the essential mouse and keyboard wires. These wires form an unsightly tangled mess in the back of all computers. Therefore chose to eliminate one of these wires by making a wireless keyboard. Second, the trend for making wireless devices continues to increase. These days, we have wireless remote controls for TVs, VCRs, stereo systems, car alarms and garage door openers. Furthermore, we have wireless telephones, network connections and the now ubiquitous cell phones. We even have wireless remote controls for floor fans. Since wireless devices are becoming so popular, we decided to make a wireless device so that we could learn more about such devices.
Design:

The wireless keyboard consists of a wired 102-key ps/2 keyboard, two Atmega32 microcontrollers, one 433.92MHz transmitter and one 433.92MHz receiver from Radiotronix.

Our design can be divided into two parts: the keyboard side and the computer side. On the keyboard side, we have one of the microcontrollers connected to the keyboard and to the transmitter. The keyboard communicates with the microcontroller and the microcontroller sends data out to the transmitter by using it’s built in UART. On the computer side, we have the other microcontroller connected to the computer and to the receiver. The computer communicates with the microcontroller and the microcontroller gets data from the receiver through its build in UART. Note that we use the UART because they allow us to easily set the transmit and receive rate and they do all the transmitting and receiving in the background. Our setup is shown in the figure below.

[image: image1.png]Keyboard side

Keyposrd

Micrsortrater

Transriter

Computer side

Recaiver

Mirsoonraler

Compuser

Because we decided to use a ps/2 keyboard and connect to the ps/2 port on the computer, we needed to implement the ps/2 protocol on the microcontrollers.
The ps/2 protocol is a bi-directional protocol, which means that not only does the keyboard send data to the computer, but the computer sends data to the keyboard. For example, the computer can do such things as tell the keyboard to reset or set the typematic delay and typematic rate, among other things. This means that in our wireless set up, not only should the keyboard be able to transmit to the computer, but the computer should be able to transmit to the keyboard. However, due to budgetary constraints, we could only purchase one transmitter and one receiver. To overcome this obstacle, we had to program the microcontroller on the keyboard side so that it would pretend to be the computer and program the microcontroller on the computers side so that it would pretend to be the keyboard. On the keyboard side, this requires that the microcontroller sends the appropriate commands to the keyboard when it boots up, and that it listens for the correct responses back from the keyboard. Furthermore, on the computer side, this requires that the microcontroller responds correctly to all the commands that the computer sends to it.

 In addition, the ps/2 protocol specifies that data be sent at a maximum rate of 10kbps to 16.6kbps. However, the transmitter/receiver pair can only transmit at a maximum of 4.8kbps. As a result, the microcontroller on the keyboard side needs to buffer the keyboard data so that it can send it out at a much slower rate through the transmitter. We rely heavily on the fact that a human being can only type so fast, and that the typematic rate (the rate at which the keyboard resends a key that is held down) is well below the maximum. On the computer side, this also means that the microcontroller needs to buffer all the data that it slowly receives before passing it along to the computer at a faster rate.

Program and Hardware Design:

First, a little background about the ps/2 protocol: The ps/2 protocol is a bi-directional protocol that uses a Clock line and a Data line. The clock is always generated by the keyboard and each clock cycle has to be between 60 and 100uSec long. When no data is being sent by either the keyboard or the computer, both the Clock line and the Data line are pulled up to 5V through pull up resistors on the keyboard side and the computer side. When the keyboard sends data, it generates clock pulses that go from 0V to 5V on the Clock line and it sends its data on the Data line. If the computer wants to send a command to the keyboard, the computer pulls the Clock line low to 0V for at least 100uSec. After the 100uSec elapse, the computer releases the Clock line, places a start bit of 0V on the Data line and waits for the keyboard to start generating clock pulses. At each clock pulse, another bit of data is placed on the Data line by the computer. Although the clock is generated by the keyboard, the computer has control over the communication. If the computer wants to stop the keyboard from sending data, it just pulls the Clock line low. The keyboard then has to wait for the Clock line to be released before it can start generating a clock and sending data. When the keyboard sends data to the computer, it sends a total of 10 bits: A start bit (0V), 8 data bits, a parity bit and a stop bit (1V). When the computer sends commands to the keyboard, it also sends a total of 10 bits: A start bit(0V), 8 data bits, a parity bit and a stop bit (1V). However, on the next clock cycle after the stop bit of the command is sent, the keyboard has to respond with an acknowledge bit (0V) on the data line.

Computer Side Hardware:

 The computer side hardware is shown in the figure below. The computer connects to the microcontroller through a 6-pin min-DIN plug and provides power to run both the microcontroller and the receiver, thus there is no need for any batteries. The

specification for keyboards is that they should draw no more than 100mA, which is sufficient for our purposes. The Clock line connects to pin 5 of PORTA and the Data line connects to pin 4 of PORTA on the microcontroller. These pins are always set to input with pull up resistors so that the Clock line and Data line are pulled high when the lines are idle. We use a 510 Ohm resistor to connect the Clock line to pin 7 of PORTA and another 510 Ohm resistor to connect the Data line to pin 6 of PORTA. We use these resistors so that we can pull the Clock and Data lines low using pins 7 and 6 respectively without shorting pins 5 and 4 to ground and burning out the port pins. The microcontroller receives data from the wireless keyboard using the Radiotronix receiver (RCR-433-RP). The data output of the receiver is passed to the RXD pin of the microcontroller. As a result, the UART handles all the signal reception in the background for us. Like for the transmitter, we use a dipole antenna made from a piece of wire that is about 2 feet long.
[image: image2.png]T

nnnnnnnn
i

it Iy Ig_\ﬁ ’

Keyboard Side Hardware:

The keyboard side hardware setup is shown in the figure below. The keyboard connects to the microcontroller through a 6-pin mini-DIN socket. The Data line of the keyboard is connected to pin 7 of PORTD and the Clock line of the keyboard is connected to pin 17, which is external interrupt 1 of the microcontroller. On the falling edges of the Clock line, the microcontroller’s interrupt triggers and either a bit of data is read in or one bit of data is sent out to the keyboard. The data that is to be transmitted to the computer is on the TXD pin of the UART. This pin connects to the data input of the Radiotronix transmitter (RCT-433-AS) and is transmitted. For the transmitter’s antenna, we use a dipole antenna made from a piece of wire that is approximately 2 feet long.

 One of the problems that we experienced involved one of the external interrupts. Originally, we used interrupt 2, which is an asynchronous edge triggered interrupt. When using this interrupt, our code refused to work. After days of work, we finally realized that the interrupt would get triggered at the incorrect times. In some cases, small noise spikes would trigger the interrupt and in other cases it would trigger for no apparent reason. Once we changed our code to use external interrupt 1, we didn’t encounter any of these errors. Based on our experience, it appears that the external interrupt is very sensitive to external noise and isn’t suited to our use.

[image: image3.png]H

H ;
LI

\
H‘I L

|
‘IH_I LEH
3323322333

HIN

Computer Side Code:
#include "main.h"

#Define PCData PIN_B2

#define PCClock PIN_B0

char buffer [50];

int8 s=0;

int8 e=0;

char outData;

void putData(char data)

{

 if ((s==0)&&(e==49))

 return;

 if ((s-e)!=1)

 {

 buffer[e]=data;

 e++;

 if (e==50)

 e=0;

 }

}

int getData(){

 if (s==e)

 return 0;

 outData=buffer[s];

 s++;

 if (s==50)

 s=0;

 return 1;

}

#int_RDA

void RDA_isr(void)

{

 putData(getc());

}

int8 isPCReadyToRecive(){

 int8 readData;

 int8 i;

 if (input(PCClock)==0){

 while (input(PCClock)==0)

 restart_wdt();

 output_bit(PCClock,1);

 if (input(PCData)==0){

 delay_us(40);

 for(i=0;i<8;i++){

 output_bit(PCClock,0);

 delay_us(40);

 output_bit(PCCLock,1);

 if(input(PCData)==1)

 bit_set(readData,i);

 else

 bit_clear(readData,i);

 delay_us(40);

 }

 output_bit(PCClock,0);

 delay_us(40);

 output_bit(PCCLock,1);

 delay_us(40);

 output_bit(PCClock,0);

 delay_us(40);

 output_bit(PCCLock,1);

 delay_us(40);

 output_bit(PCData,0);

 delay_us(5);

 output_bit(PCClock,0);

 delay_us(40);

 input(PCCLock);

 delay_us(5);

 input(PCData);

 if (readData==0x02)

 return(0XFA);

 if (readData==0x00)

 RETURN(0XFE);

 if (readData==0xf3)

 RETURN(0XFA);

 if (readData==0xF4)

 RETURN(0XFE);

 }

 return 0;

 }

 else {

 for(i=0;i<10;i++)

 {

 delay_us(2);

 if (input(PCClock)==0)

 return 0;

 }

 return 1;

 }

}

void writeToPC(char data){

 INT XX;

 int16 tData;

 int8 ctr=0;

 int8 j=0;

 here: tDAta =data;ctr=0;

 for (j=0;j<8;j++){

 if (bit_test (data, j))

 ctr++;

 }

 if (bit_test (ctr,0)){

 tdata=data|0x100;

 }

 tdata=tdata|0x200;

 output_bit(PCData,0);

 delay_us(10);

 DO{

 XX=isPCReadyToRecive();

 if ((XX!=0)&&(XX!=1)){

 data=XX;

 GOTO here;

 }

 restart_wdt();

 }WHILE(XX==0);

 output_bit(PCData,0);

 output_bit(PCClock,0);

 delay_us(50);

 output_bit(PCClock,1);

 delay_us(10);

 output_bit(PCData,0);

 output_bit(PCClock,1);

 delay_us(15);

 for (j=0;j<10;j++){

 if (bit_test(tdata,0)==0)

 {

 output_bit(PCData,0);

 output_bit(PCClock,1);

 delay_us(15);

 output_bit(PCData,0);

 output_bit(PCClock,0);

 delay_us(30);

 output_bit(PCData,0);

 output_bit(PCClock,1);

 delay_us(15);

 }

 else

 {

 output_bit(PCData,1);

 output_bit(PCClock,1);

 delay_us(15);

 output_bit(PCData,1);

 output_bit(PCClock,0);

 delay_us(30);

 output_bit(PCData,1);

 output_bit(PCClock,1);

 delay_us(15);

 }

 //output_bit(PCClock,1);

 // delay_us(20);

 tDAta = tDAta>>1;}

 input(PCData);

}

void main()

{

 int tt;

 setup_adc_ports(NO_ANALOGS);

 setup_adc(ADC_OFF);

 setup_psp(PSP_DISABLED);

 setup_spi(SPI_SS_DISABLED);

 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);

 setup_timer_1(T1_DISABLED);

 setup_timer_2(T2_DISABLED,0,1);

 enable_interrupts(INT_RDA);

 port_b_pullups (TRUE);

 /// Put PC in ready Mode

 enable_interrupts(GLOBAL);

 while (1){

 writeToPC(0xc4);

 // writeToPC(0xF0);

/*

 delay_ms(50);

 writeToPC(0x02);

 delay_ms(50);

 writeToPC(0x00);

 delay_ms(50);

 writeToPC(0xf3);

 delay_ms(50);

 writeToPC(0xF4);

*/

 restart_wdt();

 while (getData()==0){

 tt=isPCReadyToRecive();

 if ((tt!=1)&&(tt!=0)){

 writeToPC(tt);

 }

 restart_wdt();

 }

 delay_ms(500);

 restart_wdt();

 printf("P(%X)",outData);

 }

 // TODO: USER CODE!!

}
Keyboard Side code:
#include "D:\othman\ehabPICC\KbdSide\main.h"

#define kbc PIN_B0

#define kbd PIN_B1

int ctr=0; //used to calculate parity of transfired data to Keyboard.

int16 i=0,j=0;

int8 serialdata=0;

int8 is_shift=0;

const int8 low_case[256]={

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x71,0x31,0x00,0x00,0x00,0x7A,0x73,0x61,0x77,0x32,0x00,

0x00,0x63,0x78,0x64,0x65,0x34,0x33,0x00,0x00,0x20,0x76,0x66,0x74,0x72,0x35,0x00,

0x00,0x6E,0x62,0x68,0x67,0x79,0x36,0x00,0x00,0x00,0x6D,0x6A,0x75,0x37,0x38,0x00,

0x00,0x2C,0x6B,0x69,0x6F,0x30,0x39,0x00,0x00,0x2E,0x2F,0x6C,0x3B,0x70,0x2D,0x00,

0x00,0x00,0x27,0x00,0x5B,0x3D,0x00,0x00,0x00,0x00,0x04,0x5D,0x00,0x5C,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x31,0x00,0x34,0x37,0x00,0x00,0x00,

0x30,0x2E,0x32,0x35,0x36,0x38,0x00,0x00,0x00,0x2B,0x33,0x2D,0x2A,0x39,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

const int8 up_case[256]={

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x51,0x21,0x00,0x00,0x00,0x5A,0x53,0x41,0x57,0x40,0x00,

0x00,0x43,0x58,0x44,0x45,0x24,0x23,0x00,0x00,0x20,0x56,0x46,0x54,0x52,0x25,0x00,

0x00,0x4E,0x42,0x48,0x47,0x59,0x5E,0x00,0x00,0x00,0x4D,0x4A,0x55,0x26,0x2A,0x00,

0x00,0x3C,0x4B,0x49,0x4F,0x29,0x28,0x00,0x00,0x3E,0x3F,0x4C,0x3A,0x50,0x5F,0x00,

0x00,0x00,0x22,0x00,0x7B,0x2B,0x00,0x00,0x00,0x00,0x04,0x7D,0x00,0x7C,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x00,0x00,0x31,0x00,0x34,0x37,0x00,0x00,0x00,

0x30,0x2E,0x32,0x35,0x36,0x38,0x00,0x00,0x00,0x2B,0x33,0x2D,0x2A,0x39,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

int8 recive_kbd(){

 serialdata=0;

 while (input(kbc)){ //wait antil clk=0

 restart_wdt();

 }

 while (!input(kbc)){//wait antil clk=1

 restart_wdt();

 }

 for (i=0;i<8;i++){

 while (input(kbc)) {//wait antil clk=0

 restart_wdt();

 }

 while (!input(kbc)) {//wait antil clk=1

 restart_wdt();

 }

 if (input(kbd))

 bit_set(serialdata,i);

 }

 while (input(kbc)) {//wait antil clk=0

 restart_wdt();

 }

 while (!input(kbc)) {//wait antil clk=1

 restart_wdt();

 }

 delay_ms(10);

 return(serialdata);

}

int8 read_kbd(){

 int8 ret_data=0;

 int8 aa=0;

 aa=recive_kbd();

 if (aa==0xf0){

 aa=recive_kbd();

 if ((aa==0x12)||(aa==0x59)){

 is_shift=0;

 return 0;

 }

 }

 else if ((aa==0x12)||(aa==0x59)){

 is_shift=1;

 return 0;

 }

 if (is_shift==0){

 ret_data=low_case[aa];

 }

 else{

 ret_data=up_case[aa];

 }

 return (ret_data);

}

void write_tokbd(int16 data){ //ok

 ctr=0;

 for (j=0;j<8;j++){

 if (bit_test (data, j))

 ctr++;

 }

 if (bit_test (ctr,0)){

 data=data|0x100;

 }

 // set_tris_a(0x00);

 output_bit(kbc, 0);

 output_bit(kbd, 0);

 delay_us(100);

 set_tris_a(0x01);

 for (i=0;i<9;i++){

 while (input(kbc)) {//wait antil clk=0

 restart_wdt();

 }

 if (data%2==0){

 output_bit(kbd, 0);

 }

 else

 output_bit(kbd,1);

 while (!input(kbc)) {//wait antil clk=0

 restart_wdt();

 }

 while (input(kbc)) {//wait antil clk=0

 restart_wdt();

 }

 }

 //set_tris_a(0x03);

 while (input(kbd)) {//wait antil clk=0

 restart_wdt();

 }

 while (input(kbc)) {//wait antil clk=0

 restart_wdt();

 }

 while ((!input(kbc))&&(!input(kbd))) {//wait antil clk=0

 restart_wdt();

 }

}

void main()

{

 int16 kb_d=0;

 setup_adc_ports(NO_ANALOGS);

 setup_adc(ADC_OFF);

 setup_psp(PSP_DISABLED);

 setup_spi(SPI_SS_DISABLED);

 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);

 setup_timer_1(T1_DISABLED);

 setup_timer_2(T2_DISABLED,0,1);

 // TODO: USER CODE!!

 kb_d=0xed;

 write_tokbd(kb_d);

 kb_d=recive_kbd();

 kb_d=0x02; //turn on numlock

 write_tokbd(kb_d);

 kb_d=recive_kbd()&0x0ff;

 kb_d=0xf3;//Set Typematic Rate/Delay

 write_tokbd(kb_d);

 kb_d=recive_kbd()&0x0ff;

 kb_d=0x00;//250 ms / 30.0 reports/sec

 write_tokbd(kb_d);

 kb_d=recive_kbd()&0x0ff;

 /////////////

 kb_d=0xf4;//enable

 write_tokbd(kb_d);

 kb_d=recive_kbd()&0x0ff;

 while(1){

 printf(" %X ",recive_kbd());

 restart_wdt();

 }

}
FINISH!
