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Moddar Attari  & Mohammad AL Battah
Introduction:
The main idea of our project is to make a “Programmable Remote    Control” that used to control many devices so it will be good for users that have more than one device in there home and use one remote for each but with our remote the user will discard the other remotes , but he need to program our   remote at first time to assign the keys and protocols as shown below.
According to the improvement  technology in the last years remote controls became a main item for many devices in our house. You may set down in front of a TV holding two or more remotes which became something annoying . So we thought do something for this problem .

our project “Programmable Remote Control “  solved this problem You can program it according to any remote you have and  the way you want ,also you can store three remotes on it !!

So it became so easy you just set down in front of your TV holding only ONE remote control .

1-SONY Protocol:

It designed by SONY for Sony Devices 

It is based on the Pulse-Width signal coding scheme .

The code exists of 12 bits sent on a 40kHz carrier wave.
 The code starts with a header of 2,4ms .
 The header is followed by 7 command bits and 5 address bits.
The address and commands exists of logical ones and zeros.
 A logical one is formed by a space of 600µS or 1T and a pulse of 1200 µS or 2T.
 A logical zero is formed by a space of 600 µS and pulse of 600µS.
The space between 2 transmitted codes when a button is being pressed is 40mS

     The bits are transmitted least significant bits first. The total length of a           bit stream is always 45ms.
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I've collected and combined some information found on the internet about the Sony SIRC protocol. I must admit that I have never worked with this particular protocol, so I could not verify that all information is valid for all situations. 
It appears that 3 versions of the protocol exist: 12-bit (described on this page), 15-bit and 20-bit versions. I can only assume that the 15-bit and 20-bit versions differ in the number of transmitted bits per command sequence. 

Please note that a lot of confusing documentation about the SIRC protocol exists on the internet. At first I contributed to the confusion by assuming the correctness of the source documents I found myself, until someone with some SIRC experience informed me about my errors. I double checked his story with a universal remote control and a digital storage oscilloscope, and found that the bit and word order I documented were indeed wrong. 
The protocol information on this page is according to my own measurements and should be correct now. 

Features
· 12-bit, 15-bit and 20-bit versions of the protocol exist (12-bit described here)

· 5-bit address and 7-bit command length (12-bit protocol)

· Pulse width modulation

· Carrier frequency of 40kHz

· Bit time of 1.2ms or 0.6ms

Modulation
[image: image16.jpg]



Protocol
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The picture above shows a typical pulse train of the SIRC protocol. With this protocol the LSB is transmitted first. The start burst is always 2.4ms wide, followed by a standard space of 0.6ms. Apart from signalling the start of a SIRC message this start burst is also used to adjust the gain of the IR receiver. Then the 7-bit Command is transmitted, followed by the 5-bit Device address. In this case Address 1 and Command 19 is transmitted. 

Commands are repeated every 45ms(measured from start to start) for as long as the key on the remote control is held down. 

The table below lists some messages sent by Sony remote controls in the 12-bit protocol. This list is by no means meant to be complete, as the assignment of functions is probably quite dynamic.
2-NEC Protocol:
To my knowledge the protocol I describe here was developed by NEC. I've seen very similar protocol descriptions on the internet, and there the protocol is called Japanese Format. 
I do admit that I don't know exactly who developed it. What I do know is that it is used in my late VCR produced by Sanyo and was marketed under the name of Fisher. NEC manufactured the remote control IC. 
This description was taken from the VCR's service manual. Those were the days, when service manuals were fulled with useful information!

Features

· 8 bit address and 8 bit command length

· Address and command are transmitted twice for reliability

· Pulse distance modulation

· Carrier frequency of 38kHz

· Bit time of 1.125ms or 2.25ms

Modulation
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he NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about 21 cycles). A logical "1" takes 2.25ms to transmit, while a logical "0" is only half of that, being 1.125ms. The recommended carrier duty-cycle is 1/4 or 1/3.

Protocol
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The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In this case Address $59 and Command $16 is transmitted. A message is started by a 9ms AGC burst, which was used to set the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the Address and Command. Address and Command are transmitted twice. The second time all bits are inverted and can be used for verification of the received message. The total transmission time is constant because every bit is repeated with its inverted length. If you're not interested in this reliability you can ignore the inverted values, or you can expand the Address and Command to 16 bits each!
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A command is transmitted only once, even when the key on the remote control remains pressed. Every 110ms a repeat code is transmitted for as long as the key remains down. This repeat code is simply a 9ms AGC pulse followed by a 2.25ms space and a 560µs burst.
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The NEC system is the most popular world wide, but there is no standard code for buttons.
All numbers are time in micro seconds. 

It is used by Sanyo, Kenwood, Onkyo, TEAC, Yamaha , Akai, Goldstar, Hitachi, Toshiba, Pansonic , Orion .

Features

8 bit address and 8 bit command length 

Address and command are transmitted twice for reliability 

Pulse distance modulation 

Carrier frequency of 38kHz 

Bit time of 1.12ms or 2.25ms 

Modulation
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The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about 21 cycles). A logical "1" takes 2.25ms to transmit, while a logical "0" is only 1.12ms. The recommended carrier duty-cycle is 1/4 or 1/3. 
Protocol
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The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In this case Address $59 and Command $16 is transmitted. 

A message is started by a 9ms AGC burst, which was used to set the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the Address and Command. 

Address and Command are transmitted twice. The second time all bits are inverted and can be used for verification of the received message. 

The total transmission time is constant because every bit is repeated with its inverted length. If you're not interested in this reliability you can ignore the inverted values, or you can expand the Address and Command to 16 bits each! 
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A command is transmitted only once, even when the key on the remote control remains pressed. 

Every 110ms a repeat code is transmitted for as long as the key remains down. 

This repeat code is simply a 9ms AGC pulse followed by a 2.25ms space and a 560µs burst. 
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Commands

As we mentioned above NEC protocols does not have a standard commands for keys each device has its own command .

3-RC5 Protocol:

The RC-5 code from Philips is possibly the most used protocol by hobbyists, probably because of the wide availability of cheap remote controls. 
The protocol is well defined for different device types ensuring compatibility with your whole entertainment system. 

Features
· 5 bit address and 6 bit command length. 

· Bi-phase coding (aka Manchester coding) 

· Carrier frequency of 36kHz 

· Constant bit time of 1.778ms (64 cycles of 36 kHz) 

· Manufacturer Philips 
Modulation
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The protocol uses bi-phase modulation (or so-called Manchester coding) of a 36kHz IR carrier frequency. All bits are of equal length of 1.778ms in this protocol, with half of the bit time filled with a burst of the 36kHz carrier and the other half being idle. A logical zero is represented by a burst in the first half of the bit time. A logical one is represented by a burst in the second half of the bit time
Protocol
The drawing below shows a typical pulse train of an RC-5 message. This example transmits command $35 to address $05. 
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The first two pulses are the start pulses, and are both logical "1".
The 3rd bit is a toggle bit. This bit is inverted every time a key is released and pressed again. This way the receiver can distinguish between a key that remains down, or is pressed repeatedly. 
The next 5 bits represent the IR device address, which is sent with MSB first.
 The address is followed by a 6 bit command, again sent with MSB first. 
A message consists of a total of 14 bits, which adds up to a total duration of 25 ms. Sometimes a message may appear to be shorter because the first half of the start bit S1 remains idle. And if the last bit of the message is a logic "0" the last half bit of the message is idle too. 

As long as a key remains down the message will be repeated every 114ms. The toggle bit will retain the same logical level during all of these repeated messages. It is up to the receiver software to interpret this auto repeat feature. 

Components of our remote:

After we studied these information about RC5 and NEC  we started to build a receiver circuit and transmitter circuit to take and send a signal in our remote.

We First used a IR receiver to receive  the IR signal from the remote then in our code we analyze this signal and store it as 0,1 in the eeprom .

  The circuit of the receiver is:
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In our code we first  started to let our remote check if there is a signal or not (To use this we depended on the external interrupt) then our remote can know the type of signal depending on the idle signal (at RC5 600 us, at NEC 9ms). 

After this we start to decode the signal. As shown in the following code .

#int_ext                               //interrupt

int_IR()

{

restart_wdt();

counter=0;                                                 //reset counter and buffer

buffer=0;

disable_interrupts(int_ext);                            //disable interrupts

while(!input(pin_b0))                                     //wait for high level

 { delay_us(15);

    ++counter; }

  //to check rc5                     //time how long has been low

if(counter>=38&&counter<=45)         //if from about 800 to 1000 us

{   type=0;                                                     

   delay_us(200);

   for(i=0;i<13;i++)                                         //13 following bits

       {

        if(input(pin_b0))                            //if the input high

          {bit_set(buffer,0);                                  //set the LSB and shift left

            buffer<<=1;}

       else                                                                 //otherwise just shift

            buffer<<=1;

       delay_us(1740);                                                   //wait for naxt bit

       }

buffer>>=1;                                   //shift 1 right ecause of last reading

com=buffer&0b00111111;             //command is 6-bit long; ignore the rest

buffer>>=6;                                                           //shift 6 right

adr=buffer&0b00011111;                 //address is 5-bit long; ignore the rest

restart_wdt();

delay_ms(150);

restart_wdt();}

//to check nec

else if(counter>=135 && counter<=150)

{

 type=1;

while(input(pin_b0))

 {

restart_wdt();

 }

//printf("nec");

delay_us(150);

//*********************************

for(x=0;x<12;x++){

for(xx=0;xx<8;xx++){

if(input(pin_b0))

{

restart_wdt();

bit_set(array[x],xx);

delay_us(550);

restart_wdt();

}else if(!input(pin_b0))

{bit_clear(array[x],xx);

while(!input(pin_b0)){restart_wdt();}

delay_us(100);

restart_wdt();}}}

x=0;

s=0;

for(x=0;x<12;)

{restart_wdt();

for(xx=0;xx<8;){

restart_wdt();

if(!bit_test(array[x],xx))

{restart_wdt();

xx=xx+1;

if(xx>7)

{xx=0;x=x+1;if(x==12)break;}

    if(bit_test(array[x],xx))

    {        restart_wdt();

        xx=xx+1;

         if(xx>7)

          {xx=0;x=x+1;if(x==12)break;}

         if(bit_test(array[x],xx))

            {

              if(s<32){              signal[s]=1;               s++;

              restart_wdt();

              }       }

         else

             {       if(s<32){

              signal[s]=0;              s++;              restart_wdt();

              }             }     }}

else{xx++;

if(xx>7)

{xx=0;x=x+1;if(x==12)break;}

}}}

for(h=0;h<8;h++)

{if(signal[h]==1){

bit_set(address,0);

if(h<7){

adr<<=1;}}

else

{bit_clear(address,0);

if(h<7){

adr<<=1;}}}

//adres inv

for(h=0;h<8;h++)

{if(signal[h+8]==1){

bit_set(adrinv,0);

if(h+8<15){

adrinv<<=1;}}

else

{bit_clear(adrinv,0);

if(h+8<15){

adrinv<<=1;}}}

//*

for(h=0;h<8;h++)

{if(signal[h+16]==1){

bit_set(com,0);

if(h+16<23){

com<<=1;}}

else

{bit_clear(com,0);

if(h+16<23){

com<<=1;}}}

//com inv

for(h=0;h<8;h++)

{if(signal[h+24]==1){

bit_set(cominv,0);

if(h+24<31){

cominv<<=1;}}

else{

bit_clear(cominv,0);

if(h+24<31){

cominv<<=1;}}}

//*

adr=address;

//*******************************

delay_ms(2000);

}return(0);}//end of interrupt
The decoded signal is stored as zeroes and ones in the eeprom.

 An important Feature in our project that the remote can store 3 remotes in it….
To do this we used an indexing to store the signal depending on the key pressed from the keypad shown in the following code.

void transmit(int v)

{restart_wdt();

value = read_eeprom(v+rdata);

add = read_eeprom(v+radr);

type= read_eeprom(v+rtype);

adrinvt=read_eeprom(v+adri);

cominvt=read_eeprom(v+comi);

printf("va%d",com);

restart_wdt();

//start bitsrc5 transmit
if(type==0){

//printf("rc5");

init();

i=50;

set_pwm1_duty(i);

disable_interrupts(int_ext);

restart_wdt();

output_low(PIN_c3);

delay_us(t);

output_high(PIN_c3);

delay_us(ha);

output_low(PIN_c3);

delay_us(t);

output_high(PIN_c3);

delay_us(ha);

   restart_wdt();

//togle bit

if(old==1)

{//same

output_high(PIN_c3);

delay_us(ah);

output_low(PIN_c3);

delay_us(at);

   restart_wdt();

}

else

{//else

output_low(PIN_c3);

delay_us(t);

output_high(PIN_c3);

delay_us(ha);

   restart_wdt();

}

// address=0 

for(x=5;x>0;x--)

{   restart_wdt();

if(bit_test(add,x-1))

{                       // Generate 1 signal

output_low(PIN_c3);

delay_us(at);

output_high(PIN_c3);

delay_us(ah);

   restart_wdt();

}

else{                  // Generate 0  signal

output_high(PIN_c3);

delay_us(ah);

output_low(PIN_c3);

delay_us(at);

   restart_wdt();

}

}

// Data 

for(j=6;j>0;j--)

{   restart_wdt();

if(bit_test(value,j-1))

{                       // Generate 1 signal

output_low(PIN_c3);

delay_us(t);

output_high(PIN_c3);

delay_us(ha);

   restart_wdt();

}

else{                  // Generate 0  signal

output_high(PIN_c3);

delay_us(ha);

output_low(PIN_c3);

delay_us(t);

   restart_wdt();

}}

output_low(PIN_c3);

   restart_wdt();

delay_ms(114);

}

//transmit  NEC
else {

init();

i=30;

set_pwm1_duty(i);

restart_wdt();

//delay 9ms

set_timer1(0);

disable_interrupts(int_ext);

restart_wdt();

output_high(PIN_c3);

delay_ms(d);

output_low(PIN_c3);

delay_us(dh);

restart_wdt();

// address 

for(a=8;a>0;a--)

{ restart_wdt();

if(bit_test(add,a-1))

{                       // Generate 1 signal

output_high(PIN_c3);

delay_us(ss);

output_low(PIN_c3);

delay_us(sh);

   restart_wdt();

}

else

{

output_high(PIN_c3);                // Generate 0  signal

delay_us(ss);

output_low(PIN_c3);

delay_us(ss);

   restart_wdt();

}}

//adres inverted

for(a=8;a>0;a--)

{

   restart_wdt();

if(bit_test(adrinvt,a-1))

{                       // Generate 1 signal

output_high(PIN_c3);

delay_us(ss);

output_low(PIN_c3);

delay_us(sh);

   restart_wdt();

}

else{

output_high(PIN_c3);                // Generate 0  signal

delay_us(ss);

output_low(PIN_c3);

delay_us(ss);

   restart_wdt();

}}

//Data 

for(dat=8;dat>0;dat--)

{

   restart_wdt();

if(bit_test(value,dat-1))

{

output_high(PIN_c3) ;                    // Generate 1 signal

delay_us(ss);

 output_low(PIN_c3);

delay_us(sh);

   restart_wdt();

}

else

{ output_high(PIN_c3)  ;               // Generate 0  signal

delay_us(ss);

output_low(PIN_c3);

delay_us(ss);

   restart_wdt();

}}

// Data inverted 

for(dat=8;dat>0;dat--)

{

   restart_wdt();

if(bit_test(cominvt,dat-1))

{

output_high(PIN_c3) ;                    // Generate 1 signal

delay_us(ss);

 output_low(PIN_c3);

delay_us(sh);

   restart_wdt();

}

else

{ output_high(PIN_c3)  ;               // Generate 0  signal

delay_us(ss);

output_low(PIN_c3);

delay_us(ss);

   restart_wdt();

}}

output_high(PIN_c3);

//*********************

timer=get_timer1();

timer=timer/1000;

output_low(PIN_c3);

timer=timer*2;

delay=110-timer;

delay=delay;

del=delay;

restart_wdt();

output_low(PIN_c3);

delay_ms(del);

restart_wdt();

transmit_nec();

}}//               

void transmit_nec(){

output_high(PIN_c3);delay_ms(d);

output_low(PIN_c3);delay_us(2250);

output_high(PIN_c3);delay_us(560);

restart_wdt();output_low(PIN_c3);

delay_ms(98);}
**To combine between the keys and previous codes we wrote the KEYPAD function , which checks the mode(transmit or receive depending on the key connected to C5 bin ), then it calls the function write to  eeprom or transmit to transmit  .

How To use our remote :

We made using our remote so easy by adding LCD and LEDs to tell user what to do .

 To program the remote ,

First You must choose the device you want to program ,then take the original remote, press the program key in our remote (the red LED must be on now), press the key you want to store in your remote , lastly press the key on the keypad you want to program (the yellow led must be on for a moment then it turns of and the red led turns on again ) and so on .If you finish programming press the program key again (the green led must be on now ) Now You can use the remote as the origin remote .

If you finish programming the three devices , all you have to do is pressing the program key , choose the device you want to work at , enjoy watching TV!!
Complete Circuit :
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