[image: image1.png]»+——Logical "

e 12ms————» B0 600 4— B0

بسم الله الرحمن الرحيم
Programmable Remote Control
Graduation Project
2008
Prepared By

Moddar Attari & Mohammad AL Battah
Introduction:
The main idea of our project is to make a “Programmable Remote Control” that used to control many devices so it will be good for users that have more than one device in there home and use one remote for each but with our remote the user will discard the other remotes , but he need to program our remote at first time to assign the keys and protocols as shown below.
According to the improvement technology in the last years remote controls became a main item for many devices in our house. You may set down in front of a TV holding two or more remotes which became something annoying . So we thought do something for this problem .

our project “Programmable Remote Control “ solved this problem You can program it according to any remote you have and the way you want ,also you can store three remotes on it !!

So it became so easy you just set down in front of your TV holding only ONE remote control .

1-SONY Protocol:

It designed by SONY for Sony Devices

It is based on the Pulse-Width signal coding scheme .

The code exists of 12 bits sent on a 40kHz carrier wave.
 The code starts with a header of 2,4ms .
 The header is followed by 7 command bits and 5 address bits.
The address and commands exists of logical ones and zeros.
 A logical one is formed by a space of 600µS or 1T and a pulse of 1200 µS or 2T.
 A logical zero is formed by a space of 600 µS and pulse of 600µS.
The space between 2 transmitted codes when a button is being pressed is 40mS

 The bits are transmitted least significant bits first. The total length of a bit stream is always 45ms.

[image: image13.png]11 1

B> B> BB > +— B>
Logic"0" Logic "1

I've collected and combined some information found on the internet about the Sony SIRC protocol. I must admit that I have never worked with this particular protocol, so I could not verify that all information is valid for all situations.
It appears that 3 versions of the protocol exist: 12-bit (described on this page), 15-bit and 20-bit versions. I can only assume that the 15-bit and 20-bit versions differ in the number of transmitted bits per command sequence.

Please note that a lot of confusing documentation about the SIRC protocol exists on the internet. At first I contributed to the confusion by assuming the correctness of the source documents I found myself, until someone with some SIRC experience informed me about my errors. I double checked his story with a universal remote control and a digital storage oscilloscope, and found that the bit and word order I documented were indeed wrong.
The protocol information on this page is according to my own measurements and should be correct now.

Features
· 12-bit, 15-bit and 20-bit versions of the protocol exist (12-bit described here)

· 5-bit address and 7-bit command length (12-bit protocol)

· Pulse width modulation

· Carrier frequency of 40kHz

· Bit time of 1.2ms or 0.6ms

Modulation
[image: image16.jpg]

Protocol
[image: image2.png]“mel 11 0 0 1 0 0 1 00 00

Lse MSBILSB MSE:
“Start >« Command: b Addess——»

The picture above shows a typical pulse train of the SIRC protocol. With this protocol the LSB is transmitted first. The start burst is always 2.4ms wide, followed by a standard space of 0.6ms. Apart from signalling the start of a SIRC message this start burst is also used to adjust the gain of the IR receiver. Then the 7-bit Command is transmitted, followed by the 5-bit Device address. In this case Address 1 and Command 19 is transmitted.

Commands are repeated every 45ms(measured from start to start) for as long as the key on the remote control is held down.

The table below lists some messages sent by Sony remote controls in the 12-bit protocol. This list is by no means meant to be complete, as the assignment of functions is probably quite dynamic.
2-NEC Protocol:
To my knowledge the protocol I describe here was developed by NEC. I've seen very similar protocol descriptions on the internet, and there the protocol is called Japanese Format.
I do admit that I don't know exactly who developed it. What I do know is that it is used in my late VCR produced by Sanyo and was marketed under the name of Fisher. NEC manufactured the remote control IC.
This description was taken from the VCR's service manual. Those were the days, when service manuals were fulled with useful information!

Features

· 8 bit address and 8 bit command length

· Address and command are transmitted twice for reliability

· Pulse distance modulation

· Carrier frequency of 38kHz

· Bit time of 1.125ms or 2.25ms

Modulation

[image: image3.png]» +—Logical

560> 5605 > 560>
- 2.25ms > 12—

he NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about 21 cycles). A logical "1" takes 2.25ms to transmit, while a logical "0" is only half of that, being 1.125ms. The recommended carrier duty-cycle is 1/4 or 1/3.

Protocol

[image: image4.png]1001 101078 §3787001 101000877570 0 0

158 WSBLSE MSBLSE MSBLSE HSE;
o 3ms— 54— Ackess—» 4+——Adiess——» —Command—» +—Command—»

The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In this case Address $59 and Command $16 is transmitted. A message is started by a 9ms AGC burst, which was used to set the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the Address and Command. Address and Command are transmitted twice. The second time all bits are inverted and can be used for verification of the received message. The total transmission time is constant because every bit is repeated with its inverted length. If you're not interested in this reliability you can ignore the inverted values, or you can expand the Address and Command to 16 bits each!

[image: image5.png]—Ims—r
228ms

A command is transmitted only once, even when the key on the remote control remains pressed. Every 110ms a repeat code is transmitted for as long as the key remains down. This repeat code is simply a 9ms AGC pulse followed by a 2.25ms space and a 560µs burst.

[image: image6.png]110 me 11D s> 110 ms——> 110 ms-

=1 1. 1 1

Command Repeat Repeat Repeat Repeat

The NEC system is the most popular world wide, but there is no standard code for buttons.
All numbers are time in micro seconds.

It is used by Sanyo, Kenwood, Onkyo, TEAC, Yamaha , Akai, Goldstar, Hitachi, Toshiba, Pansonic , Orion .

Features

8 bit address and 8 bit command length

Address and command are transmitted twice for reliability

Pulse distance modulation

Carrier frequency of 38kHz

Bit time of 1.12ms or 2.25ms

Modulation

[image: image14.png]» +—Logical

560> 5605 > 560>
- 2.25ms > 12—

The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs long 38kHz carrier burst (about 21 cycles). A logical "1" takes 2.25ms to transmit, while a logical "0" is only 1.12ms. The recommended carrier duty-cycle is 1/4 or 1/3.
Protocol

[image: image7.png]1001 101078 §3787001 101000877570 0 0

158 WSBLSE MSBLSE MSBLSE HSE;
o 3ms— 54— Ackess—» 4+——Adiess——» —Command—» +—Command—»

The picture above shows a typical pulse train of the NEC protocol. With this protocol the LSB is transmitted first. In this case Address $59 and Command $16 is transmitted.

A message is started by a 9ms AGC burst, which was used to set the gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, which is then followed by the Address and Command.

Address and Command are transmitted twice. The second time all bits are inverted and can be used for verification of the received message.

The total transmission time is constant because every bit is repeated with its inverted length. If you're not interested in this reliability you can ignore the inverted values, or you can expand the Address and Command to 16 bits each!

[image: image8.png]—Ims—r
228ms

A command is transmitted only once, even when the key on the remote control remains pressed.

Every 110ms a repeat code is transmitted for as long as the key remains down.

This repeat code is simply a 9ms AGC pulse followed by a 2.25ms space and a 560µs burst.

[image: image9.png]110 me 11D s> 110 ms——> 110 ms-

=1 1. 1 1

Command Repeat Repeat Repeat Repeat

Commands

As we mentioned above NEC protocols does not have a standard commands for keys each device has its own command .

3-RC5 Protocol:

The RC-5 code from Philips is possibly the most used protocol by hobbyists, probably because of the wide availability of cheap remote controls.
The protocol is well defined for different device types ensuring compatibility with your whole entertainment system.

Features
· 5 bit address and 6 bit command length.

· Bi-phase coding (aka Manchester coding)

· Carrier frequency of 36kHz

· Constant bit time of 1.778ms (64 cycles of 36 kHz)

· Manufacturer Philips
Modulation
[image: image15.jpg]Sony infrared remote protocof:

Carrier frequency:= 40kHz

Repetition time:= 40ms
Lsb Msb

PR
Source: hitp:fusers pandora befdavshomepage

The protocol uses bi-phase modulation (or so-called Manchester coding) of a 36kHz IR carrier frequency. All bits are of equal length of 1.778ms in this protocol, with half of the bit time filled with a burst of the 36kHz carrier and the other half being idle. A logical zero is represented by a burst in the first half of the bit time. A logical one is represented by a burst in the second half of the bit time
Protocol
The drawing below shows a typical pulse train of an RC-5 message. This example transmits command $35 to address $05.
[image: image10.png]bt b2 | i3 | ity | i | b | b7 | b | b b0 b1 bi2 bit3 bi

N e =
if52 7 R gt T ot 0

Start bits abways 1)

The first two pulses are the start pulses, and are both logical "1".
The 3rd bit is a toggle bit. This bit is inverted every time a key is released and pressed again. This way the receiver can distinguish between a key that remains down, or is pressed repeatedly.
The next 5 bits represent the IR device address, which is sent with MSB first.
 The address is followed by a 6 bit command, again sent with MSB first.
A message consists of a total of 14 bits, which adds up to a total duration of 25 ms. Sometimes a message may appear to be shorter because the first half of the start bit S1 remains idle. And if the last bit of the message is a logic "0" the last half bit of the message is idle too.

As long as a key remains down the message will be repeated every 114ms. The toggle bit will retain the same logical level during all of these repeated messages. It is up to the receiver software to interpret this auto repeat feature.

Components of our remote:

After we studied these information about RC5 and NEC we started to build a receiver circuit and transmitter circuit to take and send a signal in our remote.

We First used a IR receiver to receive the IR signal from the remote then in our code we analyze this signal and store it as 0,1 in the eeprom .

 The circuit of the receiver is:
[image: image11.emf]VCC

pic_b0_senser_input

gnd

1

VCC

2

VOUT

3

U2

TSOP1736

C1

0.1u

R7

40k

R8

40k

VCC

pic_b0_senser_input

gnd

1

VCC

2

VOUT

3

U2

TSOP1736

C1

0.1uR7

40k

R8

40k

In our code we first started to let our remote check if there is a signal or not (To use this we depended on the external interrupt) then our remote can know the type of signal depending on the idle signal (at RC5 600 us, at NEC 9ms).

After this we start to decode the signal. As shown in the following code .

#int_ext //interrupt

int_IR()

{

restart_wdt();

counter=0; //reset counter and buffer

buffer=0;

disable_interrupts(int_ext); //disable interrupts

while(!input(pin_b0)) //wait for high level

 { delay_us(15);

 ++counter; }

 //to check rc5 //time how long has been low

if(counter>=38&&counter<=45) //if from about 800 to 1000 us

{ type=0;

 delay_us(200);

 for(i=0;i<13;i++) //13 following bits

 {

 if(input(pin_b0)) //if the input high

 {bit_set(buffer,0); //set the LSB and shift left

 buffer<<=1;}

 else //otherwise just shift

 buffer<<=1;

 delay_us(1740); //wait for naxt bit

 }

buffer>>=1; //shift 1 right ecause of last reading

com=buffer&0b00111111; //command is 6-bit long; ignore the rest

buffer>>=6; //shift 6 right

adr=buffer&0b00011111; //address is 5-bit long; ignore the rest

restart_wdt();

delay_ms(150);

restart_wdt();}

//to check nec

else if(counter>=135 && counter<=150)

{

 type=1;

while(input(pin_b0))

 {

restart_wdt();

 }

//printf("nec");

delay_us(150);

//*********************************

for(x=0;x<12;x++){

for(xx=0;xx<8;xx++){

if(input(pin_b0))

{

restart_wdt();

bit_set(array[x],xx);

delay_us(550);

restart_wdt();

}else if(!input(pin_b0))

{bit_clear(array[x],xx);

while(!input(pin_b0)){restart_wdt();}

delay_us(100);

restart_wdt();}}}

x=0;

s=0;

for(x=0;x<12;)

{restart_wdt();

for(xx=0;xx<8;){

restart_wdt();

if(!bit_test(array[x],xx))

{restart_wdt();

xx=xx+1;

if(xx>7)

{xx=0;x=x+1;if(x==12)break;}

 if(bit_test(array[x],xx))

 { restart_wdt();

 xx=xx+1;

 if(xx>7)

 {xx=0;x=x+1;if(x==12)break;}

 if(bit_test(array[x],xx))

 {

 if(s<32){ signal[s]=1; s++;

 restart_wdt();

 } }

 else

 { if(s<32){

 signal[s]=0; s++; restart_wdt();

 } } }}

else{xx++;

if(xx>7)

{xx=0;x=x+1;if(x==12)break;}

}}}

for(h=0;h<8;h++)

{if(signal[h]==1){

bit_set(address,0);

if(h<7){

adr<<=1;}}

else

{bit_clear(address,0);

if(h<7){

adr<<=1;}}}

//adres inv

for(h=0;h<8;h++)

{if(signal[h+8]==1){

bit_set(adrinv,0);

if(h+8<15){

adrinv<<=1;}}

else

{bit_clear(adrinv,0);

if(h+8<15){

adrinv<<=1;}}}

//*

for(h=0;h<8;h++)

{if(signal[h+16]==1){

bit_set(com,0);

if(h+16<23){

com<<=1;}}

else

{bit_clear(com,0);

if(h+16<23){

com<<=1;}}}

//com inv

for(h=0;h<8;h++)

{if(signal[h+24]==1){

bit_set(cominv,0);

if(h+24<31){

cominv<<=1;}}

else{

bit_clear(cominv,0);

if(h+24<31){

cominv<<=1;}}}

//*

adr=address;

//*******************************

delay_ms(2000);

}return(0);}//end of interrupt
The decoded signal is stored as zeroes and ones in the eeprom.

 An important Feature in our project that the remote can store 3 remotes in it….
To do this we used an indexing to store the signal depending on the key pressed from the keypad shown in the following code.

void transmit(int v)

{restart_wdt();

value = read_eeprom(v+rdata);

add = read_eeprom(v+radr);

type= read_eeprom(v+rtype);

adrinvt=read_eeprom(v+adri);

cominvt=read_eeprom(v+comi);

printf("va%d",com);

restart_wdt();

//start bitsrc5 transmit
if(type==0){

//printf("rc5");

init();

i=50;

set_pwm1_duty(i);

disable_interrupts(int_ext);

restart_wdt();

output_low(PIN_c3);

delay_us(t);

output_high(PIN_c3);

delay_us(ha);

output_low(PIN_c3);

delay_us(t);

output_high(PIN_c3);

delay_us(ha);

 restart_wdt();

//togle bit

if(old==1)

{//same

output_high(PIN_c3);

delay_us(ah);

output_low(PIN_c3);

delay_us(at);

 restart_wdt();

}

else

{//else

output_low(PIN_c3);

delay_us(t);

output_high(PIN_c3);

delay_us(ha);

 restart_wdt();

}

// address=0

for(x=5;x>0;x--)

{ restart_wdt();

if(bit_test(add,x-1))

{ // Generate 1 signal

output_low(PIN_c3);

delay_us(at);

output_high(PIN_c3);

delay_us(ah);

 restart_wdt();

}

else{ // Generate 0 signal

output_high(PIN_c3);

delay_us(ah);

output_low(PIN_c3);

delay_us(at);

 restart_wdt();

}

}

// Data

for(j=6;j>0;j--)

{ restart_wdt();

if(bit_test(value,j-1))

{ // Generate 1 signal

output_low(PIN_c3);

delay_us(t);

output_high(PIN_c3);

delay_us(ha);

 restart_wdt();

}

else{ // Generate 0 signal

output_high(PIN_c3);

delay_us(ha);

output_low(PIN_c3);

delay_us(t);

 restart_wdt();

}}

output_low(PIN_c3);

 restart_wdt();

delay_ms(114);

}

//transmit NEC
else {

init();

i=30;

set_pwm1_duty(i);

restart_wdt();

//delay 9ms

set_timer1(0);

disable_interrupts(int_ext);

restart_wdt();

output_high(PIN_c3);

delay_ms(d);

output_low(PIN_c3);

delay_us(dh);

restart_wdt();

// address

for(a=8;a>0;a--)

{ restart_wdt();

if(bit_test(add,a-1))

{ // Generate 1 signal

output_high(PIN_c3);

delay_us(ss);

output_low(PIN_c3);

delay_us(sh);

 restart_wdt();

}

else

{

output_high(PIN_c3); // Generate 0 signal

delay_us(ss);

output_low(PIN_c3);

delay_us(ss);

 restart_wdt();

}}

//adres inverted

for(a=8;a>0;a--)

{

 restart_wdt();

if(bit_test(adrinvt,a-1))

{ // Generate 1 signal

output_high(PIN_c3);

delay_us(ss);

output_low(PIN_c3);

delay_us(sh);

 restart_wdt();

}

else{

output_high(PIN_c3); // Generate 0 signal

delay_us(ss);

output_low(PIN_c3);

delay_us(ss);

 restart_wdt();

}}

//Data

for(dat=8;dat>0;dat--)

{

 restart_wdt();

if(bit_test(value,dat-1))

{

output_high(PIN_c3) ; // Generate 1 signal

delay_us(ss);

 output_low(PIN_c3);

delay_us(sh);

 restart_wdt();

}

else

{ output_high(PIN_c3) ; // Generate 0 signal

delay_us(ss);

output_low(PIN_c3);

delay_us(ss);

 restart_wdt();

}}

// Data inverted

for(dat=8;dat>0;dat--)

{

 restart_wdt();

if(bit_test(cominvt,dat-1))

{

output_high(PIN_c3) ; // Generate 1 signal

delay_us(ss);

 output_low(PIN_c3);

delay_us(sh);

 restart_wdt();

}

else

{ output_high(PIN_c3) ; // Generate 0 signal

delay_us(ss);

output_low(PIN_c3);

delay_us(ss);

 restart_wdt();

}}

output_high(PIN_c3);

//*********************

timer=get_timer1();

timer=timer/1000;

output_low(PIN_c3);

timer=timer*2;

delay=110-timer;

delay=delay;

del=delay;

restart_wdt();

output_low(PIN_c3);

delay_ms(del);

restart_wdt();

transmit_nec();

}}//

void transmit_nec(){

output_high(PIN_c3);delay_ms(d);

output_low(PIN_c3);delay_us(2250);

output_high(PIN_c3);delay_us(560);

restart_wdt();output_low(PIN_c3);

delay_ms(98);}
**To combine between the keys and previous codes we wrote the KEYPAD function , which checks the mode(transmit or receive depending on the key connected to C5 bin), then it calls the function write to eeprom or transmit to transmit .

How To use our remote :

We made using our remote so easy by adding LCD and LEDs to tell user what to do .

 To program the remote ,

First You must choose the device you want to program ,then take the original remote, press the program key in our remote (the red LED must be on now), press the key you want to store in your remote , lastly press the key on the keypad you want to program (the yellow led must be on for a moment then it turns of and the red led turns on again) and so on .If you finish programming press the program key again (the green led must be on now) Now You can use the remote as the origin remote .

If you finish programming the three devices , all you have to do is pressing the program key , choose the device you want to work at , enjoy watching TV!!
Complete Circuit :
[image: image12.emf]D9

1N6264/TO

RE0/RD/AN5

8

RE1/WR/AN6

9

RE2/CS/AN7

10

GND

12

OSC2/CLKOUT

14

RC0/T1OSO/T1CKI

15

RC1/T1OSI/CCP2

16

RC2/CCP1

17

RC3/SCK/SCL

18

RD0/PSP0

19

RD1/PSP1

20

RD2/PSP2

21

RD3/PSP3

22

RC4/SDI/SDA

23

RC5/SDO

24

RC6/TX/CK

25

RC7/RX/DT

26

RD4/PSP4

27

RD5/PSP5

28

RD6/PSP6

29

RD7/PSP7

30

GND

31

MCLR/VPP

1

OSC1/CLKIN

13

RA0/AN0

2

RA1/AN1

3

RA2/AN2

4

RA3/AN3/VREF

5

RA4/TOCKI

6

RA5/AN4/SS

7

RBO/INT

33

RB1

34

RB2

35

RB3

36

RB4

37

RB5

38

RB6

39

RB7

40

VDD

11

VDD

32

U3

PIC16f877

Title

Size

Document Number

Rev

Date:

Sheet

of

<Doc>

<RevCode>

Programmable Remote Control

A

1

1

Thursday, May 17, 2007

R16

40k

pic_xtal_2

xtal_cap_1

xtal_cap_2

pic_reset

VCC

pic_c1_red_led

0

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

0

C3

10u

pic_xtal_1

0

pic_c_mode_switch

VCC

D5

Yellow_led

R10

40k

R14

40k

column_1

pic_b0_senser_input

column_2

column_3

column_4

S17

program

S18

MCLR

R9

0

VDD

VCC

4

WL

9

GND

10

QL

11

QH

12

WH

13

X1

3

X2

2

X3

1

X4

14

Y1

5

Y2

6

Y3

7

Y4

8

U1

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c3_data

pic_c3

pic_c2_PWM

pic_c2

pic_c2_PWM

pic_c2

pic_c2_PWM

pic_c2

pic_c2_PWM

pic_c2

pic_c2_PWM

pic_c2

pic_c2_PWM

pic_c2

pic_c2_PWM

pic_c2

pic_c2_PWM

pic_c2

0

VCC

ROW_4

R11

Signal_modulated

Q1

BC327

D6

LED

GND

VCC

D3

LED

bin_RE1

D8

Green_led

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

pic_prog_sw

C5

0.1u

bin_RE0

pic_c0

pic_vdd

ROW_2

sw_Remote1_b1

pic_a5

SW4

VCC

bin_rd4

Name = pic_c2_PWM

SW3

VCC

0

sw_Remote2_b2

VCC

0

bin_rd5

LCD_VCC

sw_Remote3_b3

bin_rd7

LCD_GND

gnd

1

VCC

2

VOUT

3

U2

TSOP1736

SW2

VCC

bin_rd6

pic_c4_yellow_led

Signal_out

D1

1N6264/TO

R5

1k

C1

0.1u

0

R15

10k

D4

1N6264/TO

0

VEE

12

VSS

13

9

EN

VDD

14

RS

11

RW

10

DB0

8

DB1

7

DB2

6

DB3

5

DB4

4

DB5

3

DB6

2

DB7

1

U4

LCD

VCC

R7

40k

bin_rd1

R12

40k

C6

0.1u

VCC

bin_rd2

S11

s18

ROW_3

D2

red_led

R4

10k

R6

40k

R3

10k

R2

10k

R1

10k

S10

s19

S12

s17

S13

s23

S9

s20

S14

s22

S15

s21

S16

s21

S8

s13

S7

s14

S6

s15

S5

s16

S4

s9

S3

s10

SW1

S2

s11

S1

s12

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

pic_a1

VDD

pic_a0

pic_a0

pic_a0

pic_a0

pic_a0

pic_a0

pic_a0

pic_a0

D7

1N6264/TO

R13

40k

pic_a2

pic_a2

pic_a2

pic_a2

pic_a3

pic_a3

VCC

pic_a4

pic_a4

ROW_1

X1

4MHz

C2

10p

C4

10p

bin_rd3

R8

40k

D9

1N6264/TO

RE0/RD/AN5

8

RE1/WR/AN6

9

RE2/CS/AN7

10

GND

12

OSC2/CLKOUT

14

RC0/T1OSO/T1CKI

15

RC1/T1OSI/CCP2

16

RC2/CCP1

17

RC3/SCK/SCL

18

RD0/PSP0

19

RD1/PSP1

20

RD2/PSP2

21

RD3/PSP3

22

RC4/SDI/SDA

23

RC5/SDO

24

RC6/TX/CK

25

RC7/RX/DT

26

RD4/PSP4

27

RD5/PSP5

28

RD6/PSP6

29

RD7/PSP7

30

GND

31

MCLR/VPP

1

OSC1/CLKIN

13

RA0/AN0

2

RA1/AN1

3

RA2/AN2

4

RA3/AN3/VREF

5

RA4/TOCKI

6

RA5/AN4/SS

7

RBO/INT

33

RB1

34

RB2

35

RB3

36

RB4

37

RB5

38

RB6

39

RB7

40

VDD

11

VDD

32

U3

PIC16f877

Title

SizeDocument NumberRev

Date:Sheetof

<Doc><RevCode>

Programmable Remote Control

A

11Thursday, May 17, 2007

R16

40k

pic_xtal_2

xtal_cap_1xtal_cap_2

pic_reset

VCC

pic_c1_red_led

0

pic_prog_swpic_prog_swpic_prog_swpic_prog_swpic_prog_sw

0

C3

10u

pic_xtal_1

0

pic_c_mode_switch

VCC

D5

Yellow_led

R10

40k

R14

40k

column_1

pic_b0_senser_input

column_2column_3

column_4

S17

program

S18

MCLR

R9

0

VDD

VCC

4

WL

9

GND

10

QL

11

QH

12

WH

13

X1

3

X2

2

X3

1

X4

14

Y1

5

Y2

6

Y3

7

Y4

8

U1

pic_c3_datapic_c3

pic_c2_PWMpic_c2pic_c2_PWMpic_c2pic_c2_PWMpic_c2pic_c2_PWMpic_c2pic_c2_PWMpic_c2pic_c2_PWMpic_c2pic_c2_PWMpic_c2pic_c2_PWMpic_c2

0

VCC

ROW_4

R11

Signal_modulated

Q1

BC327

D6

LED

GND

VCC

D3

LED

bin_RE1

D8

Green_led

pic_prog_sw

C5

0.1u

bin_RE0

pic_c0

pic_vdd

ROW_2

sw_Remote1_b1

pic_a5

SW4

VCC

bin_rd4

Name = pic_c2_PWM

SW3

VCC

0

sw_Remote2_b2

VCC

0

bin_rd5

LCD_VCC

sw_Remote3_b3

bin_rd7

LCD_GND

gnd

1

VCC

2

VOUT

3

U2

TSOP1736

SW2

VCC

bin_rd6

pic_c4_yellow_led

Signal_out

D1

1N6264/TO

R5

1k

C1

0.1u

0

R15

10k

D4

1N6264/TO

0

VEE

12

VSS

13

9

EN

VDD

14

RS

11

RW

10

DB0

8

DB1

7

DB2

6

DB3

5

DB4

4

DB5

3

DB6

2

DB7

1

U4

LCD

VCC

R7

40k

bin_rd1

R12

40k

C6

0.1u

VCC

bin_rd2

S11

s18

ROW_3

D2

red_led

R4

10k

R6

40k

R3

10k

R2

10k

R1

10k

S10

s19

S12

s17

S13

s23

S9

s20

S14

s22

S15

s21

S16

s21

S8

s13

S7

s14

S6

s15

S5

s16

S4

s9

S3

s10

SW1

S2

s11

S1

s12

pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1pic_a1

VDD

pic_a0pic_a0pic_a0pic_a0pic_a0pic_a0pic_a0pic_a0

D7

1N6264/TO

R13

40k

pic_a2pic_a2pic_a2pic_a2

pic_a3pic_a3

VCC

pic_a4pic_a4ROW_1

X1

4MHz

C2

10p

C4

10p

bin_rd3

R8

40k

