Cache Simulator

By

Mohammed Abu-jamous

Razi AL-sayed

An-Najah National University

Department of Computer Engineering

Submitted for the degree of

Bachelor of Engineering

in the division of Computer Systems Engineering.

December 2004

December 20, 2004

The Dean

Faculty of Engineering

An-Najah National University
Dear Professor Raed Al-qadi,

In accordance with the requirements of the degree of Bachelor of Engineering in the division of Computer Systems Engineering, We present the following thesis entitled "Cache Simulator". This work was performed under the supervision of Dr. Loay Malhis.

We declare that the work submitted in this thesis is our own, except as acknowledged in the text and footnotes, and has not been previously submitted for a degree at The An-Najah National University or any other institution.

Yours sincerely,

Mohammed Abu-jamous.

And Razi Al-sayed.

Acknowledgments

We would like to express our appreciation to the following people who have contributed to the development of our thesis:
Dr. Luai Malhees for his guidance and oversight throughout our project.
Maen Tebi for assisting with various aspects of this thesis on numerous occasions, and providing us with a second opinion on design issues.
Samer Arandi and Ahmed Afana for providing us with useful tips on working with the MLCacheSim.
Our Parents for every moment they spent for us.

Abstract
This thesis describes the design and implementation of the MLCacheSim, a cache simulator program. This product is designed to give the computer researchers, designers and students the ability to monitor cache systems behavior and determine the various cache systems performance.
The MLCacheSim is implemented using ANSI / ISO C++ programming language. This thesis introduces this as “The Simulator Engine” implementation.

A final analysis shows that many of the core modules are functional in the final implementation and that a fully operational Simulator is achieved.
Chapter 1

Introduction

MLcacheSim is a Multi Level Uni-Processor trace-driven cache Simulator.
MLcacheSim is a simulator program which designed for research and educational use in the field of memory caches for Uni-Processor systems. MLcacheSim is really a very powerful tool to get a full statistics of any desired cache system and to understand cache Trade-offs and characteristics.

Cache Simulation Models
There are three general classes of simulation techniques that are used.
the more sophisticated techniques yield more accuracy, particularly for more recent architectures, at the cost of longer execution time.

The first and simplest technique and hence the least costly, is profile based, static modeling.
In this technique a dynamic execution profile of the program, which indicates how often each instruction is executed, is obtained by one of there methods:
1) By using hardware counters on the processor.

2) By using instrumented execution, in which instrumentation code is compiled into the program.

3) By interpreting the program at the instruction set level.
Once the profile is obtained, it is used to analyze the program in a static fashion by looking at the code. And telling what types of instructions were executed with what frequency.
Trace-Driven Model
Trace-driven simulation is a more sophisticated technique for modeling performance and is particularly useful for modeling memory system performance.
In trace-driven simulation, a trace of the memory references executed is created, usually either by simulation or by instrumented execution.
The trace includes what instructions were executed (given by the instruction address). As well as the data addresses accessed.
Trace-driven simulation can be used in several different ways.
Most common use is to model memory system performance, which can be done by simulating the memory system, including the caches and any memory management hardware using the address trace.
Since the trace data allows a simulation of the exact ordering of instructions, higher accuracy can be achieved than with a static approach.
But Trace-driven simulation typically isolates the simulation of any pipeline behavior from the memory system.
In particular, it assumes that the trace is completely independent of the memory system behavior. This is not the case for the most advanced processors a third technique is needed.
Execution-Driven Simulation
The third technique, which is the most accurate and most costly, is execution-driven simulation.
In execution-driven simulation a detailed simulation of the memory system and the processor pipeline are done simultaneously.

This allows the exact modeling of the interaction between the tow, which is critical.
Hence our thesis is focusing on the cache systems characteristics and performance we used the second technique "Trace-Driven Simulation Model".
The trace-driven technique is more accurate than the static model, and is independent of the pipeline of the processor.

Information produced by the MLCacheSim
· Total Hit Rate.
· Total Miss Rate.

· Write Hit Rate.

· Read Hit Rate.

· Write Miss Rate.

· Read Miss Rate.

· Fetch Hit Rate.

· Fetch Miss Rate.

· Average Memory access Time.

· Number of Hits.
· Number of Misses.

· Number of Write Hits.

· Number of Read Hits.

· Number of Write Misses.

· Number of Read Misses.

· Number of Fetch Hits.

· Number of Fetch Misses.
Features of MLCashSim
The program is two parts The Engine and the Interface.
The Engine was written in pure ANSI / ISO C++.

This gives the simulator more portability to be compiled on deferent machines.

The Interface was made by the MFC.

This gives the user a very simple and easy to use interface.
What 's New in MLcacheSim ?
· Split cache systems simulation is now available.
· Easy Pseudo assembly language included.
· Step by Step simulation.
· Retch Text Detailed Report with colored charts.
· Very large cache sizes and any number of cache levels.

A Partial List of MLcacheSim’s Features:
· 232 cache levels.
· 232 Byte the size of each cache level.
· Very fast simulation algorithms.
· Rich Text reports that details every property of the cache system simulated.
· Colored charts for the hit and miss rates to ease the understand of the results.
· Detailed information about each cycle in each level of the cache system.
· Detailed information about each block in the cache system.
· Step by Step simulation for educational purposes.
· Project and results saving.
· cache systems can be customized as desired.

Chapter 2

Theoretical Background

Memory Hierarchy

Computer programmers and users are expected to ask for unlimited amounts of fast memory. An economical solution to that desire is a memory hierarchy, which take advantage of locality and cost-performance of deferent memory technologies.

Memory Hierarchy Organization

Since fast memory is expensive, a memory hierarchy is organized into several levels – each smaller, faster, and more expensive per memory unit than the next lower level (upper level near the CPU).

The goal of memory hierarchy is to provide a memory system with cost almost as low as the cheapest level of memory and speed almost as fast as the fastest level.
Note: each level maps addresses from slower, larger memory to a smaller but faster memory higher in the hierarchy.

What is Cache?
Cache in the language dictionary means a safe place to hide or store things.

But in the Computer Science originally it means the first level of memory hierarchy encounter after the CPU (upper level in memory hierarchy).

Nowadays the term is applied to any level of buffering employed to reuse commonly accessed items.
Block: a fixed size collection of data containing the requested word, called a block.

The block is the smallest set of data that can be present in a memory or cache level or do not.
The Tag: is the part of the memory address which is stored with the block in the cache to use it to determine a hit condition, and recognizing if the address requested is available in the cache.

Valid Bit: a bit used to indicate if the tag in the block is valid (the block contains valid data).

Dirty Bit: a bit used to indicate if the block in the cache have be written to it.

Temporal locality: is a principal that tells us that we are likely to need data that have been accessed now again in the near future. So it is useful to place it in the cache where it can be accessed quickly.

Spatial locality: is a principal that tells us that there is a high probability that the other data near the requested data (data in the same block) will be needed soon.

Cache Characteristics

Mapping type: Where a block can be placed in the cache is called mapping type, there is three deferent types.
1) Direct map: if each block has only one place it can appear in the cache, the cache is said to be direct mapped.

2) Full associative: if the block can be placed anywhere in the cache.

3) Set associative: if the block can be placed in a restricted set of places in the cache. A set is a group of blocks in the cache. The block first mapped into a set then can be placed anywhere in the set.

If there are n blocks in a set. The cache placement is called n-way set associative.

Replacement Policy: is the policy used to determine which block in the cache should be removed and replaced with newer blocks. Here are some of the most popular policies.
1) Least Recently Used: in this policy there are counters for each block to determine how many times it have been accessed recently. The one with the least accessed will be used as a victim and replaced with the newer one. This is a good policy because it depends on the temporal locality.

2) First in First out: this is an approximation for the LRU because it uses the oldest block in the set to be removed and replaced.
3) Random: randomly choose the victim block. This policy is very easy to implement in hardware and it's not that very bad so it's widely used.
NOTE: Direct map caches needn't any replacement policy because there is only one place for each block to place in it.
Write policy: when reading a block there is no problem to get it from the memory and when the time to replace it is coming then we can delete it. But if we write new data on the block we need to make those changes permanent in the main memory there is many ways to do that here is some of them.
1) Write Back: The information is written only on the block in the cache. The modified cache block is written to main memory only when it is replaced.
2) Write through: The information is written to both the block in the cache and the block in the lower level memory.
Write Miss Policy: There are two policies that determine what should happen when attempting to write on a block that is not in the cache.
1) Write Allocate: in this policy the block is copied from the lower memory to the cache. Then a write hit occurs. In this option write miss acts like a read miss.
2) No-Write Allocate: in this policy when a write miss occurs the data is written to the lower memory without bringing the block to the cache.
Both policies can be used with write back or write through. But normally, write back is caches use write allocate, hopping that subsequent writes that block can captured by the cache. Write through caches often use no-write allocates. The reason is that even if there are subsequent writes to that block the writes still have to go to the lower memory level.
Cache Measures

Latency: time needed to retrieve the first word in the block from main memory
Cache Hit: when the CPU finds a requested data item in the cache, it is called a cache hit.
Cache Miss: when the CPU doesn't find a requested data item it needs in the cache, a cache miss occurs.
Miss Rate: the fraction of cache access that result in cache miss.
Hit Rate: the fraction of cache access that result in cache hit.

Average Memory Access Time: the performance of the cache is measured by the average memory access time which is the hit time + (miss rate X miss penalty). This is the most important measure for the memory performance.
Getting to know MLCacheSim and its Main Screen.
This section is meant to be a brief introduction to the various navigation and functional controls of this deceptively simple—yet-powerful—program. Here we’ll concentrate on the major interface elements that are common in MLcacheSim work areas.
More about:
· Wizard.
·
Main View.
· Program Bar.
· Output Bar.
· Statistics Bar.
· Report View.

· Menu Tools and Buttons.
Classes and structures used in the simulator:

In this section of the documentation we will talk about the source code of the engine and how does it word, we will talk also about each function and what it does.

The source code of the engine is consists of four main classes in addition to other classes and structures used as storage classes.

The main for classes implement the architecture of any cache system the user want to simulate, and they are:

Block Class: it is a storage class, and there is an instance of this class for each block in the cache system.

Cache Class: this class encapsulates the Block class and it is a complicated class. It is responsible about replacement policy for any cache segment. The algorithm for this class is very complicated and it is full hashed.

MLCache Class: this class encapsulates Cache class and it is responsible about write hit, write miss and read miss policies, it is also responsible about computing the average memory access time and the read hit, read miss, write hit, write miss, fetch hit and fetch miss for each level in the cache.

Trace Class: this class encapsulates the MLCache Class, and it is the class that the user will deal with, it is responsible about compiling the pseudo ASM code and building the traced algorithm form it, it is also responsible about all the tracing process.

Functions used in each class:

Block Class

Block(void)
Block(unsigned long WordCount)

The first one is the default constructor of the class, and the only different between them that the second is store No. of words within the block in a flag (it does not allocate any memory for the words).

~Block(void)

Default destructor

void Flush()

Empty Block from its contents.

void Resize(unsigned long WordCount)

Resize the block by changing the words count and allocate the memory for words (unsigned char for each word).

void SetTag(unsigned long Tag)

Store the tag value of the block.

unsigned long GetTag()

Return the tag value of the block

void SetData(int Index,unsigned char data)

Store data (word) in the block with index "Index", if the block containing real data then "data" parameter will stored in Index and the valid, dirty and LRU/FIFO flags will be updated, if not just the flags will be updated.

unsigned char GetData(int Index)

Retrieve the data (word) stored at index "Index", if the block does not containing real data then this function will return zero.

void SetValid(bool Valid = true)

Set or clear the valid flag.

bool IsValid()

If the valid flag is set then it will return true, otherwise it will return false.

void SetDirty(bool Dirty = true)

Set or clear the dirty flag.

bool IsDirty()

If the dirty flag is set then it will return true, otherwise it will return false.

void SetRealData(bool Real = true)

Set or clear the RealData flag.

bool IsRealData()

If the RealData flag is set then it will return true, otherwise it will return false.

void IncLRU()

Inc the LRU flag (counter) by one.
void ClearLRU()

Clear the LRU flag (counter).

unsigned long GetLRU()

Get the value stored in the LRU counter.

unsigned long GetFIFO()

Get the value stored in the FIFO counter.

void SetFIFO(unsigned long FIFO)

Set the FIFO flag (register) to certain value.

unsigned long GetWordCount()

Return block words count (size of block in words).
void SetBlockType(CACHE_STYLE style)

Set block to DATA or INSTRUCTIONS, this flag is important in case we work with Non-Harvard cache style.

CACHE_STYLE GetBlockType()

Return type of the block (DATA or INSTRUCTIONS).

HBLOCK GetBlock()

Return a HBLOCK structure that contains all the information about the block.

Cache Class

Cache(unsigned long Size, MAP_TYPE Type, unsigned long BlockWordCount

, unsigned long MemAddSpace, Types::REP_ROLICY RepPolicy
, char WordSize = 4, bool RealData = true, unsigned long

MemoryAddBy=1, unsigned long SetCapacity=1,
 unsigned long Clocks=1)
Constructor
~Cache(void)

Destructor
void Flush()

Invalidate all Blocks in the Cache.

bool GetWord(unsigned long Address,unsigned char &Word

,OPERATION op,bool first_time)

Retrieve a word from the cachce with address.

Parameters:

Address: the address of the desired word.

Word: a reference to unsigned char used to get the word.

Op: it can be on of the following

R: determine that the operation is READ

F: determine that the operation is FETCH

bool SetWord(unsigned long Address,unsigned char Word,bool first_time)

Write a word in a specific address.

Parameters:

Address: the address that you want to write on.

Word: value you want to write.

bool SetBlock(unsigned long Address,unsigned char Words[],CACHE_STYLE

BlockStyle,unsigned long &OldAddress,unsigned char

OldWords[],CACHE_STYLE &oldBlockStyle)

Write a Block in the cache.

Parameters:

Address: unsigned long value must be in any address in the block.

Words[]:an array with size of (WordsCount ”see constructor”) cantains the data of the block.

BlockStyle: can be one of the following.

DATA: determine that the data to write is data

INSTRUCTIONS: determine that the data to write is instructions

void InvalidateBlock(unsigned long BlockNo)

Invalidate a specific block in the cache.

void LockBlock(unsigned long Address,bool Lock = true)

Lock the block so it will not be invalidate even if it is the victim block.

This function is obsolete and we do not use it in the tracing operation but we keep it because we like the algorithm.

bool FindWord(unsigned long Address,unsigned long &BlockNo,unsigned long

&Index)
bool FindBlock(unsigned long Address,unsigned long &BlockNo)

this two functions used to find a specific word/block in the cache.

Parameters:

Address: unsingned long value contains the address we search for.

BlockNo: a reference to unsigned long variable to store number of the block.

Index: a reference to unsigned long variable to store number of the word within the block.

bool GetBlockData(unsigned long BlockNo,unsigned char Words[])

retrieve data from a specific block.

Parameter:

BlockNo: No. of block to retrieve data from.

Words: an array with size of (WordsCount ”see constructor”) to store data in.

HBLOCK GetLastAccessedBlock()

This function used to retrieve the last block that been accessed in the block, it returns a handle to that block that contains information about the block can be used in the user interface.

unsigned long FindVictemBlock(unsigned long Address)

this functions used to find a block to write to.

unsigned long GetTotalHit()
unsigned long GetReadHit()
unsigned long GetWriteHit()
unsigned long GetFetchHit()
unsigned long GetTotalMiss()
unsigned long GetReadMiss()
unsigned long GetWriteMiss()
unsigned long GetFetchMiss()
float GetTotalHitRate()
float GetReadHitRate()
float GetWriteHitRate()
float GetFetchHitRate()
float GetTotalMissRate()
float GetReadMissRate()
float GetWriteMissRate()
float GetFetchMissRate()

this functions used to retrieve statistical information about the cache.

void IncReadHit()
void IncReadMiss()
void IncWriteHit()
void IncWriteMiss()
void IncFetchHit()
void IncFetchMiss()

this function is used to update counters in the cache.

unsigned long GetNextVictemBlock(unsigned long BlockNo)

this functions is used to find the LRU or FIFO block in a specific set.

void GetSetRange(unsigned long BlockNo,unsigned long &SetStart,
unsigned long &SetEnd)

this function is used to retrieve the start block and end block No of a specific set.
int Invalidate(unsigned long Address,unsigned char words[])
this function is used to invalidate a specific block and retrieve its data to write back if it is dirty.

MAP_TYPE GetCacheType()

This function is used to retrieve mapping time of the cache.

unsigned long GetSize()

this function is used to retrieve size of the cache.

REP_ROLICY GetReplacementPolicy()

This function is used to retrieve replacement policy of the cache.

unsigned long GetAssociativity()

this function is used to retrieve associativity of the cache.

unsigned long
 GetRandomBlock(unsigned long max)

this function is used to retrieve a random block.

CACHE_STYLE GetBlockType(unsigned long BlockNo)

This function is used to know wheather the block contains DATA or INSTRUCTIONS.
unsigned long GetBlockCount()

this function is used to retrieve count of the blocks in the cahce.

unsigned long GetClocks()

this function is used to retrieve Access time of the cache.
MLCache Class

MLCache(WRITE_HIT_POLICY WriteHitPolicy

,WRITE_MISS_POLICY WriteMissPolicy

,READ_MISS_POLICY ReadMissPolicy

,unsigned long BlockWordCount

,unsigned long MemoryAddSpace

,char WordSize

,unsigned long MemoryAddBy

,bool RealData

,int hcachecount

,HCACHE* hcache

,unsigned long MemClocks=50);

Constructor

~MLCache();

Destructor

void SetBlockBackward(unsigned long Level,unsigned Address,

unsigned char Words[],Cache** cache);

this function is used to write a block to lower level

void SetBlockForward(unsigned long Level,unsigned long TargetLevel,unsigned

Address,unsigned char Words[],OPERATION op,Cache** cache);

This function is used to write a block to upper level.

void SetBlock(unsigned long Level,unsigned long Address,Cache**

cache,OPERATION op);

this function is used to write a block in a certain block and in this function we call the SetBlockBackward and SetBlockForward function as they needed and they will executed recursively.

void GetMBlock(unsigned long Address,unsigned char Words[]);

this function is used to retrieve a block from memory.

void SetMBlock(unsigned long Address,unsigned char Words[]);

this function is used to write a block to memory.

void SetMWord(unsigned long Address,unsigned char Word);

this function is used to write word to memory.

unsigned char GetMWord(unsigned long Address);

this function is used to retrieve word from memory.

INSTRUCTION FetchInst(unsigned long PC);

This function is used to read an instruction from memory system.

INSTRUCTION GetInst(unsigned long PC);

This instruction is used for the user interface it just get us the instruction at location PC in the memory.

unsigned char GetWord(unsigned long Address);

this function is used to read DATA from memory system.

void SetWord(unsigned long Address,unsigned char Data);

this function is used to write DATA to memory system.

void AddInst(unsigned long Address,INSTRUCTION inst);

this function is used to Add a pseudo ASM instruction to the memory system we have.

void AddInstT(unsigned long Address,INSTRUCTION inst);

this function is used to Add a traced instruction to the system.

void AddData(unsigned long Address);

this function is used to add data to the memory and we use it in the compilation process so we willknow the size of memory we will implement.

bool GetLastAccessedBlocks(HBLOCK &b);

this function is used to retrive the last accessed blocks in the memory system.

unsigned long GetLevelsCount()

this function is used to retrieve No. of levels in the system.

unsigned long GetBlockWordCount()

this function is used to retrieve size of the block in words.

bool IsRealData()

this function is used to know wheather the memory system conatains real data or not.

Cache* GetCache(unsigned long Level,CACHE_STYLE Style)

This function is used to get a pointer to any level object in the system.

__int64 GetCurrentCycle()

This function is used to retrieve memory accessed time.

void ReleaseQue();

this function is used to release any un necessary memory in the que that we use to store the sequence of the accesses to the memory system.

Trace Class

Trace(
WRITE_HIT_POLICY WriteHitPolicy

,WRITE_MISS_POLICY WriteMissPolicy

,READ_MISS_POLICY ReadMissPolicy

,unsigned long BlockWordCount

,unsigned long MemoryAddSpace

,char WordSize

,unsigned long MemoryAddBy

,bool RealData

,int hcachecount

,HCACHE* hcache

,unsigned long memClocks

,char filename[]);

Constructor

~Trace();

Destructor

MLCache*
GetCache();

This function is used to retrieve a pointer to MLCache object used in the system.

int Compile();

read the file and check it for errors (in case of pseudo assembly language).

SYNTAXERROR GetError(int LineNo);

Retrive the error type at a specific line.

void Build();

build the program(in case of pseudo assembly language).

void BuildT();

build the program(in case of traced program).

unsigned long StepIt(bool restart = false);

execute the next instruction(in case of pseudo assembly language).

unsigned long StepItT(bool restart = false);

execute the next instruction(in case of traced program).
Project Wizard
The Project Wizard is designed to be a helpful tool for the user to design his cache in few simple steps and easy way that ensures there is no conflict in the configurations or the cache parameters.
As you can see bellow.[image: image1.jpg]Project Wizard - General

Cache Simulator Project Wizard

Project Name
[Gae] | |

Fileto Trace

(fromes) []

ache Simuator Pseudo ASH File *

Memory System Characteristics General Cache Characteristcs

o s soe [2os)
D | i ot
Block Words Count 4

:
Werd sz Loy v] ke mss polcy wrte Alocate v |

Memory Addressed By |1 Byte v| vrite Hit Policy e
Accss Tie (Clcke) ReadMsspoiey [NoRead o V]

The first step in the wizard is to Name your project. That can be done by clicking on the save button.
[image: image2.jpg]Save As

Savein: | gao NEW VOLUME (D) v

(C2Ad-aware v6.0.181 Pro

&‘

My Recent
Documents

=
=)

Deskiop

erts

My Computer

&

My Network

cl: =g

(D Archamds
(Darrangs
(Cb8196F239ef60fe003
[Cachesim

(Ecam

(E2cam300L

(Decapt

[cap finsl with YCAPS
(B cap2 errors withCBitm|
(Ecash from internet
[Ecomponents
[E2Copy of Fallzons

@ cracks

(Drp

<

Sycreencal

(S8 Fles
Dl
(=0
matrix
(Dmodem
2w
(e o

Siee: 41.0MB
Folders: Debug, res, Release
Files: cap1.aps, capl.cpp, capt.h, capt.nch, capt.rc,

(Dquitiets|
Dradis
Drtos

S e 8 =1
. EEm B o=

The save dialog will provide the file name the correct file extension (.sim) if you did not write it at the end of the file name. Also if you didn't give your project a name the Wizard will prompt you to choose a one.
Then you will need to provide the file that contains the tracing information or a file that wrote in the Pseudo assembly by clicking the Browse button in the File to trace area.
If you need to work with split cache (Harvard Style) you need to use only pseudo assembly files.
In the Memory System Characteristics you have to specify the Main Memory properties such as address space, number of words in the block, word size, memory addressed by, and access time.
In the General cache Characteristics area you can specify the number of cache levels, and the policies of the read and write hit or miss. See Write Miss policy, Write Hit policy, Read Miss Policy.
Depending on the number of cache levels you choose the number of the next screens will vary. There will be a screen for each level to customize the level parameters.
Here is an example:
[image: image3.jpg]Project Wizard - Cache Level 1 of 2 Levels

Cache Simulator Project Wizard:.,

HONHARVARD Cache. Instricton Cache
Cache e Cache s
Replacement Polcy |LU ¥ Replacement Polcy
CacheMapping Type [Fullassockive | Cache Mapping Type
Setassodativty | 1 setassodaivy
Acess Time(Clocks) |1 1 ccess Time(cloce)
Hotes

*In Set Asociaive Cache Size must be at east equaled to (Block Word Count * Word Sizs *
Set Assocativy)
* Otherwse cache Size Must Be at Least equaled to (Block Word Count * Word Size)

 The Harvard Style cache check box is disabled because the trace file is a memory address tracing and not a Pseudo assembly file. So the cache can't be splited and must be a unified cache system.
In the NONHARVARD Cache area you can enter the cash size, the replacement policy, Mapping Type, and the access time.
If you choose the set associative the Set Associativity field will be enabled and you have to know that the size of the cash must be at least equal to the number of words in the block X number of bytes in the word X set associativity.
If you are working with Harvard style cache the left area will be the DATA cache area and the right area will be the Instruction cache area. See the picture below.
[image: image4.jpg]Project Wizard - Cache Level 1 of 2 Levels

Cache Simulator Project Wizard:....

Harvard style

Data Cache. Instruction Cache.
Corhe Sze 2KBes v Cache See 2KBes v
Replacement Poliy |LRU e Replacement Policy | LRU v
Cathe Mapping Type | Full Associive v Cache Mepping Type | Ful Assoctive v
Set Assoativty | Set Assoriativty]
Access Time(Clocks) |1 Access Time(Clocks) | 1

Hotes

*1In Set Associaive Cache Size must be at least equaled to (Block Word Count * Word Size *
Set Assocativy)
* Otherwise cache Size Must Be a Least equaled to (Block Word Count * Word Size)

You have to repeat this work for each level of the cash until you finish all the levels.
Then you will reach the final screen of the wizard
[image: image5.jpg]Project Wizard - Finish

Cache Simulator Project Wizard :..,

- You have fiished the wizard.]

Clck Finih Button and the cache System wil be constructed.

- cache constructing process may take Few minutes depending on sizefsizes for
cache]cache levels you wank to simulate.

- General System characteristics:|

File name(to Trace): D:{sinirace2.txt
Fils Type: Psuedo ASH Language
Memory Address Space: DT
Block Word Count: 04
ard Sze: 01 ByteBytes
Memory Addressed By: 0x1 Byte[Bytes
Simlate Real Data
Cathe 5ystem level Count: 2.
Wit Hit Policy: Wite Back.
ke Miss Poicy: Wite Albcate
Read Miss Polcy: No Read Through

- Cache Level 1
* Data Cache:
& Size:0xE000

* Replacement Polcy:Least Recently Used
* Mapping Type:Ful Associativiy v

In the final screen a full detailed report is shown to let you review the settings and confirm it to start the system creation process.
Main View
The main view is the stage of the program. All the interactive shows are done here. It's the component that used to demonstrates the caching process. You can see here each level of the cash and the main memory. As shown below
[image: image6.jpg]ied | Level 2, Unified | Memory

BlockNo|LRU_|Tsg |valid |Dirty | word 0| word 1| word 2| word 3

There is a tab for each level of the cache. and each tab contains a raw for each block.
There is a field for each word in the block. Also additional information about the block such as if the block was written (dirty) , if the block is a valid one (valid) , Tag , and specific information related to the cache replacement policy such as LRU (least recently used) , and FIFO (First In First Out).
Also coloring the fields were used to make it easy for the user to trace what is going on the main view.
[image: image7.jpg]Level 1, Uni

d | Level 2, Unified | Memory

BlockNo| LR | Tag | valid |pinty | word 0| word 1| word 2| word 3
[oass | v |~ e
[ooz | v | 7 | = =
0 ocbes| v | 7 ===
ob oxite | v | 7 | =
o oxioe | v | 7 ==
od oaos | v | 7 | = =
e oz | v | 7 ===
o4 octar| v | 7 | =
00 ocaro| v | 7 ==
[y o | v | 7 e
oaz e | v ==
043 oz | v | 7 (== = =
o4 oand | v | 7 ===
[o7 | v | 7 = =
[oaic | v | 7 ==
07 oan| v | 7 [A
o8 oz | ===
09 oais | v | 7 | == =
oxda oa.. | 7/ ==
[e | v | 7 =TI
[oczet| ===
od oz | v | 7 [|
e e |

[

<

 The yellow color means that this block was written to this place from another level.
A red rectangle means that this word was accessed via a write instruction.
Blue rectangles means that this word was read via a read instruction.
Green color means that this block was copied to another level.
[image: image8.jpg]Level 1, Unified| Level 2, Unified | Memory|

Block No| Set o | FIFO | Tag vaiid | ity | word o| word 1| word 2| word 3
00 |0 | v |oaomso |~ i ey
o oo 000304 | e [y L
03 |oo oxionsbe |)) S ey
o [oa oxionsdn | e e e ey
05 |oa

o6 |oa

o7 |oa

[

08 |0z | v |oaomes | /)) [y
o6 o2

o |oa

od o3 oxionzds | [S R [
e |0 | 7 |odowhs | <

00 o oxionaet | o e
o1 o oxionam0 | O S S [
01z o oxionzed | | S i
o3 |od | 7 |oaomes | [S S o
oas o5 ocionzft | o e ey
0as |0 oxionzds | O S S [
s |05 | 7 |ocom | S

[image: image9.jpg][£3

Program bar
There are two parts of this bar. The first is used when you are using the pseudo assembly language.
It contains the operation of each address and the operands of that operation.
Below this there is a grid that provides information a bout the virtual processor registers such as the Accumulator, the PC (Program Counter), return address, Return Address, Random MIN, and Random MAX.
A blue raw indicates the current executed instruction.
[image: image10.jpg]| adeess | Opcoce | operandy | ODErandZ"

00 READ Da0o0
o WRIE oo s

oe R owm o0

06 WRIE oaow s

o R e 00

|05 weIE oaon oeo

06 ReD oo 00

|00 weie o e

o6 D o osa
|be mc ome 0w

i

| Accumulator)
Program Counter 0

Retun Address | 00

[Rardom N 00

Randm s et v
<

The second is used when you are using trace driven files it contains the memory references and the access mode read or write. Also for helping the user tracing the execution sequence a blue color will paint the raw where the current execution is going.

[image: image11.jpg]L

grram

ho. Access | Address

OO0 WRITE 0002,
00 WRITE 01002f,
0@ WRTE ooz,
0G READ Oq0m
04 READ 0002,
06 WRITE 0002,
06 WRITE 0002,
00 WRITE 0002,
06 READ 0a0m
06 READ 0a0m
0@ WRITE 0a0ms

Oh WRITE Oa002fit

Ok WRITE OxI002f,
o READ Oxi002
e WRITE Ox1002

O WRITE OxI002f,

040 WRITE OxI002S,. ¥
<l B

Output Bar
Here is where the very specific details of each cycle operation can be found.
This grid view provides information about each cycle such as the write and read operations.
[image: image12.jpg]Operation

Level1: Write Word on Address 0x1002fdbd, Not found
Levelz: Read Block 0x1002fdbé,Not found
Main Memory: Read Block 0x1002fdb4

The miss and hit events, and the block transfers.
Statistics bar
The statistics bar is where you can see the results of the cache system performance during the step by step simulation or after finishing the whole simulation process.
[image: image20.jpg]Level 1 v

Count Rate(jTotal Accesses)
HE 4770 | 95.400000%
Mss 2 4.600000%
e HE 1712 |34.240001%
virke Miss 118 2.360000%
ReadHE 3058 |61.159998%
ReadMiss 112 2.240000%

< >
272000

000 00

a0 a0

200 om0 e

1000 oo HH
1

o o
w R

As you can see here, there is a combo box up here to chose which level statistics you would like to get information about.
There is a table contains the number of Hits and the number of Missis. Also details of each such as write or read and the percentage of each action.
Below this there is the AMAT (average memory access time) and chart that contains the information in the table.
The Green bar is for the Hit.
The Blue bar is for the Miss.

The Red bar is the total of the miss and the hit.
The Report
The final report is retch text format because this file format is widely used and easy to use.
To view the report you will need to click on the report button on the views bar[image: image13.jpg]

.
In this report full information and details of the results for all the cache levels is provided as well as charts for those numbers.
Deferent colors and fonts used in the report to make it easy to read.
Note: The full report file is generated only when the simulation process ends.
Menu Reference
There are many menus to provide deferent operations and commands for the user
The simulation Bar [image: image14.jpg]

This bar contains the commands needed to run the simulation the first button [image: image15.jpg]

is the run button. This button will run the simulation immediately the simulation process may take few minutes depending on the cache system structure and the settings you used.
The run button is the most choice for designers and researchers.
The second button is [image: image16.jpg]

the step button. This button will run the simulation in step by step mode. It's a very helpful tool for the educational purposes students can know and understand how the cache system will respond in each step in the deferent configurations.
The third button [image: image17.jpg]

is the step in button this button will take you in the very deep details of each instruction or each memory access. This is really what each computer architecture teacher needs to explain how cache systems work.
Finally the last two buttons the restart button [image: image18.jpg]

and the Flush button [image: image19.jpg]

 . The restart button is used to restart the simulation from the initial state of the program. The Flush button is making the procedures that done in cache systems when a context switching event happens.

Appendix A
Instruction Set Manual

Arithmetic operations
 DEC ADD
 INC ADD
 SUB ADD,VAL
 SUB ADD,ACC
 ADD ADD,VAL
 ADD ADD,ACC

Data transfer operations
 WRITE ADD,ACC
 WRTIE ADD,VAL
 READ ADD

Logical operations
 AND ADD,VAL
 AND ADD,ACC
 OR ADD,VAL
 OR ADD,ACC
 CLR ADD
 SHL ADD,VAL
 SHR ADD,VAL
 RL ADD,VAL
 RR ADD,VAL

Boolean variable manipulation operations
 JE ADD,VAL
 JNE ADD,VAL
 JA ADD,VAL
 JAE ADD,VAL
 JB ADD,VAL
 JBE ADD,VAL
 JZ ADD
 JNZ ADD
 DJNZ ADD1,ADD2

Program branches operations
 CALL ADD
 JMP ADD
 RET

 Directive Commands
 SETA VAL
 SETR MIN,MAX
 ENDP

Notes on instruction set
 VAL: can be a direct value or a RAND
 RAND: random value specified by (SETR MIN,MAX)
 Addressing mode is only direct
 ACC (accumulator): a register contains the result of the last operation.
 Procedure call stack is one level only.

Arithmetic operations

 DEC ADD
Description:
 Decrement Value at Address (ADD) by 1.
Operation:
 [ADD] = [ADD] – 1
 ACC = [ADD]

 INC ADD
Description:
 Increment Value at Address (ADD) by 1.
Operation:
 [ADD] = [ADD] + 1
 ACC = [ADD]

 SUB ADD,VAL
Description:
 Decrement Value at Address (ADD) by direct Value (VAL).
Operation:
 [ADD] = [ADD] – VAL
 ACC = [ADD]

 SUB ADD,ACC
Description:
 Decrement Value at Address (ADD) by Value at ACC.
Operation:
 [ADD] = [ADD] – ACC
 ACC = [ADD]

 ADD ADD,VAL
Description:
 Increment Value at Address (ADD) by direct Value (VAL).
Operation:
 [ADD] = [ADD] + VAL
 ACC = [ADD]

 ADD ADD,ACC
Description:
 Increment Value at Address (ADD) by Value at ACC.
Operation:
 [ADD] = [ADD] + ACC
 ACC = [ADD]

Data transfer operations

 WRITE ADD,ACC
Description:
 Write value at ACC to Address (ADD).
Operation:
 [ADD] = ACC

 WRTIE ADD,VAL
Description:
 Write direct value VAL to Address (ADD).
Operation:
 [ADD] = VAL
 ACC = VAL

 READ ADD
Description:
 Read value at Address (ADD).
Operation:
 ACC = [ADD]

Logical operations

 AND ADD,VAL
Description:
 Write (value at ADD) AND (direct value VAL) to address ADD.
Operation:
 [ADD] = [ADD] & VAL
 ACC = [ADD]

 AND ADD,ACC
Description:
 Write (value at ADD) AND (value at ACC) to address ADD.
Operation:
 [ADD] = [ADD] & ACC
 ACC = [ADD]

 OR ADD,VAL
Description:
 Write (value at ADD) OR (direct value VAL) to address ADD.
Operation:
 [ADD] = [ADD] | VAL
 ACC = [ADD]

 OR ADD,ACC
Description:
 Write (value at ADD) OR (value at ACC) to address ADD.
Operation:
 [ADD] = [ADD] | ACC
 ACC = [ADD]

 CLR ADD
Description:
 Clear the content of address ADD.
Operation:
 [ADD] = 0
 ACC = 0

 SHL ADD,VAL
Description:
 Shift left the content of address ADD by VAL times.
Operation:
 [ADD] = [ADD] << VAL
 ACC = [ADD]

 SHR ADD,VAL
Description:
 Shift right the content of address ADD by VAL times.
Operation:
 [ADD] = [ADD] >> VAL
 ACC = [ADD]

 RL ADD,VAL
Description:
 Rotate left the content of address ADD by VAL times.
Operation:
 [ADD] = ([ADD] << VAL)|([ADD]>>(No of Bits – VAL))
 ACC = [ADD]

 RR ADD
Description:
 Rotate right the content of address ADD by VAL times.
Operation:
 [ADD] = ([ADD] >> VAL)|([ADD]<<(No of Bits – VAL))
 ACC = [ADD]

Boolean variable manipulation operations

 JE ADD,VAL
Description:
 Jump to address ADD if ACC equals to direct value VAL.
Operation:
 IF ACC == VAL THEN
 PC = ADD.
 END IF

 JNE ADD,VAL
Description:
 Jump to address ADD if ACC does not equal to direct value VAL.
Operation:
 IF ACC != VAL THEN
 PC = ADD.
 END IF

 JA ADD,VAL
Description:
 Jump to address ADD if ACC greater than direct value VAL.
Operation:
 IF ACC > VAL THEN
 PC = ADD.
 END IF

 JAE ADD,VAL
Description:
 Jump to address ADD if ACC greater than or equals to direct value VAL.
Operation:
 IF ACC >= VAL THEN
 PC = ADD.
 END IF

 JB ADD,VAL
Description:
 Jump to address ADD if ACC less than direct value VAL.
Operation:
 IF ACC < VAL THEN
 PC = ADD.
 END IF

 JBE ADD,VAL
Description:
 Jump to address ADD if ACC less than or equals to direct value VAL.
Operation:
 IF ACC <= VAL THEN
 PC = ADD.
 END IF

 JZ ADD
Description:
 Jump to address ADD if ACC equals to ZERO.
Operation:
 IF ACC == ZERO THEN
 PC = ADD.
 END IF

 JNZ ADD
Description:
 Jump to address ADD if ACC does not equal to ZERO.
Operation:
 IF ACC != ZERO THEN
 PC = ADD.
 END IF

 DJNZ ADD1,ADD2
Description:
 Decrement the value at address ADD2 by one and jump to address ADD1 if ACC (the new value at address ADD2) equals to ZERO.
Operation:
 [ADD2] = [ADD2] – 1
 ACC = [ADD2]
 IF ACC == ZERO THEN
 PC = ADD.
 END IF

Program branches operations

 CALL ADD
Description:
 Store the program counter PC in special function register RETA and then set the program counter PC to address ADD.
Operation:
 RETA = PC + 1
 PC = ADD

 JMP ADD
Description:
 Set the program counter PC to address ADD.
Operation:
 PC = ADD

 RET
Description:
 Set the program counter PC to address stored at special function register RETA.
Operation:
 PC = RETA

Directive Commands

 SETA VAL

Sets the address of the next instruction in the memory.

 SETR MIN,MAX
Sets the Random generation range between the Min (minimum) and Max (maximum) values.

 ENDP
Indicates the end of the program written in Pseudo assembly.

